
.

Methods for the Estimation of the
Uncertainty of Wind Power Forecasts

P. Pinson∗, H.Aa. Nielsen, H. Madsen
Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark

M. Lange
Energy and Meteo Systems, Oldenburg, Germany

G. Kariniotakis
Center for Energy and Processes, Ecole des Mines de Paris, France

March 23, 2007

Abstract
This report describes the scientific developments carried out in the frame of the Work Package
3 of the ANEMOS project. It concentrates on the developed methods, specially dedicated to the
estimation of the uncertainty of wind power forecasts. Several methods for quantile or interval
forecasting are described, and their performance is evaluated and discussed. Focus is particu-
larly given to the fact that the uncertainty in wind power prediction is highly conditional to a
wealth of explanatory variables. Among others, the meteorological situations and the nonlinear
nature of the power curve greatly impact the forecast uncertainty. Specific developments towards
meteorological-situation specific uncertainty estimates are also given.
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Chapter 1

Introduction

Predictions of wind power output are traditionally provided in the form of point fore-
casts. They have the advantage of being easily understandable because this single num-
ber is expected to tell everything about future power generation. Today, a major part
of the research efforts on wind power forecasting still focuses on point prediction1 only,
with the aim of assimilating more and more observations in the models or refining the
resolution of physical models for better representing wind fields at the very local scale
for instance [32]. These efforts may lead to a significant decrease of the level of prediction
error. However, even by better understanding and modeling both the meteorological and
power conversion processes, there will always be an inherent and irreducible uncertainty
in every prediction. This epistemic uncertainty corresponds to the incomplete knowledge
one has of the processes that influence future events [87].

Therefore, in complement to point forecasts of wind generation in the next hours, of
major importance is to provide means for assessing online the accuracy of these predic-
tions. Error measures described in the Anemos Deliverable Report 2.1 [64] only provide
an assessment of a given point forecasting method performance over a large period of
time. They tell what is the historic performance of the method, but they cannot give an
estimation of the uncertainty related to a given prediction. In practice today, uncertainty
can be expressed:

• with indices informing on the predictability of individual weather situations,

• with probabilistic predictions in the form of quantile of interval forecasts. This last
type of uncertainty estimates are associated to a probability related to the likeli-
ness of future power production. If not, they can be seen as error bands, giving a
qualitative and visual information on expected uncertainty.

Whatever their nature, such uncertainty estimates are expected to be valuable for devel-
oping alternative strategies for the management or the trading of wind power generation.
In a general manner, they are necessary for optimizing the decision-making process re-
lated to the use of wind power forecasts.

1Point prediction is defined as the providing of a single forecast power value for each look-ahead time
for the considered site (or group of sites), thus without adressing the issue of uncertainty.
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The present report gathers the research works carried out in the frame of the European
project Anemos for the estimation of the uncertainty of wind power forecasts. More
precisely, the proposed methods have been developed by Energy & Meteo Systems (and
University of Oldenburg), Technical University of Denmark, and ARMINES/École des
Mines de Paris. The various approaches have been derived either from studies on the
predictability of the weather dynamics, or from physical considerations on the wind-to-
power conversion process, or finally from statistical methods (based on a non-parametric
modeling of predictive distributions). Overall conclusions are given at the end of the
present report, as well as perspectives regarding further research.
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Chapter 2

Assessment of wind speed

dependent prediction error

Abstract

The investigations in this chapter follow the idea that the prediction error quantitatively depends
on the meteorological situation that has to be predicted. As a first approach the wind speed as
a main indicator of the forecast situation is considered in greater detail. The probability density
functions (pdf) of the measured wind speed conditioned on the predicted one are found to be
Gaussian in the range of wind speeds that is relevant for wind energy applications. An analysis
of the standard deviations of these conditional pdfs reveals no systematic dependence of the accu-
racy of the wind speed prediction on the magnitude of the wind speed. With the pdfs of the wind
speed as basic elements the strongly non Gaussian distribution of the power prediction error is
explained underlining the central role of the non linear power curve. Moreover, the power error
distribution can easily be estimated based on the statistics of the wind speed, the wind speed
forecast error, and the power curve of the turbine. Thus, it can be reconstructed without knowing
the actual measured power output which is interesting for future sites or sites where no data is
available. In addition, a simple formula based on linearising the standard deviation of the error
is derived. This model illustrates the dominating effect of small relative errors in the wind speed
prediction being amplified by the local derivative of the nonlinear power curve. This chapter is
taken from [57].

2.1 Idea behind detailed error assessment

The standard error measures that are used for the performance evaluation of prediction
methods are based on annual averages of the data and provide only one constant value
for each forecast time. However, there is reason to believe that the magnitude of the er-
ror quantitatively depends on the meteorological situation to be predicted. Thus, a more
detailed view on the prediction error is required where the main parameters that char-
acterise typical wind conditions have to be identified and related to the corresponding
forecast error.

The first candidate that can serve as an indicator of the forecast situation is the wind
speed itself. It is a continuous parameter closely related to the forecast situation and
the main input into the power prediction system such that in this chapter the role of the
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predicted wind speed and its prediction error are investigated more deeply.
The chain of events seems rather straightforward: the initial uncertainty introduced

by the error of the wind speed prediction is propagated through the power prediction
system where it is mainly subject to changes by the power curve. Due to its non linearity
the power curve is expected to amplify or damp initial errors in the wind speed according
to its local derivative. And this derivative is a function of the wind speed. So clearly, the
power curve is expected to be the key element that connects the errors of the wind speed
prediction and the power prediction. Thus, the major aim here is to derive a quantitative
relation between the two.

The practical use of this relation and its implementation into a wind power prediction
system is to provide the user with additional information to estimate the risk of trusting
in the prediction. Hence, the prediction system has to supply the prediction itself and
a useful indication concerning the reliability of the individual prediction. As financial
losses might be proportional to the magnitude of the prediction error the inherent risk of
faulty predictions must be known for each forecast situation.

2.2 Introduction of conditional probability density functions

It was seen in previous investigations [53, 57] that the probability density function, pdf(ǫu),
of wind speed error is Gaussian in most cases. As mentioned above a more detailed infor-
mation concerning the error to be expected in special conditions is desirable. Thus, a first
approach is to refine the pdfs and look at the statistical properties of the measured wind
when the predicted wind speed is confined to a certain value which from a mathematical
point of view leads to conditional pdfs. In this section the deviations of the measured
wind speed from one is investigated in terms of these conditional pdfs.

Predicted and measured values of a meteorological variable at the same point of time
and space are naturally not independent. In fact, they are supposed to be highly corre-
lated as this is a major prerequisite for an accurate prediction. The pairs (xpred, xmeas)

are drawn simultaneously from a joint distribution, pdf(xpred, xmeas), that characterises
the statistical properties of the prediction and its error. This means that for arbitrary but
fixed predicted values xpred the occurrences of the corresponding measured values xmeas

are expected to be mainly concentrated in an interval around xpred rather than being
spread over the whole range of all possible values.

In the following investigation the “prediction perspective” is taken which means that
the predicted values are used as condition to the measurements. This aims at formulating
the equations such that they can directly be used for prediction purposes.

Formally the conditional pdf of the wind speed is given by

pdf(umeas|upred) =
pdf(upred, umeas)

pdf(upred)
(2.1)

where pdf(upred, umeas) is the joint distribution and pdf(upred) the unconditional, so-called
marginal, wind speed distribution.

For practical purposes the time series are given by a finite number of data points with
a certain accuracy. So the probability function of the measured wind speed umeas under
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the condition upred is approximately calculated by confining the prediction values to an
interval around upred and bin-counting the corresponding values for umeas.

The conditional pdfs can, of course, be used to obtain the unconditional distribution
by

pdf(umeas) =

∫ ∞

0
pdf(umeas|upred) pdf(upred) dupred. (2.2)

These conditional pdfs of the wind speed can be used to reconstruct the error distribu-
tion, pdf(ǫu), of the wind speed prediction. The conditional pdfs defined in Equation (2.1)
already contain all the information needed for that as they describe the deviations be-
tween predicted and measured values. With the transformation

umeas 7→ ǫu where ǫu = upred − umeas (2.3)

the pdf(umeas|upred) are merely mirrored and shifted along the abscissa and transfered to
pdf(ǫu|upred). The original, unconditional error distribution can then be recovered by

pdf(ǫu) =

∫ ∞

0
pdf(ǫu|upred) pdf(upred) dupred. (2.4)

Note that if the conditional pdfs are approximately equal to each other and do not
vary much with upred one obtains pdf(ǫu) ≈ pdf(ǫu|upred). In this case the overall pdfs of
the error can directly serve as conditional pdf.

Reconstructing the distribution of the power prediction error

Knowing the statistical properties of the wind speed is very helpful with regard to the
prediction of the power output as the wind speed is the main input variable fed into the
power prediction system. However, the error distributions of the power prediction differ
qualitatively from those of the wind speed in that they are neither Gaussian nor approxi-
mately Gaussian which is mainly due to the non linear power curve of the wind turbines.
The following investigation focuses on the role of the power curve in transforming the
distributions of the wind speed and its error into those of the power output.

In Figure 2.1 a typical power curve, P (u), is shown with cut-in speed around 4 m/s

followed by a sharp increase of power over the interval 5 − 10 m/s and a saturation at
the level of rated power for higher wind speeds. Let ∆u be a small interval around the
wind speed u and ∆P = P (u + ∆u) − P (u) the resulting difference in the power output.
For small ∆u the corresponding ∆P is then given by a Taylor expansion around u:

∆P =
dP

du
(u)∆u. (2.5)

This equation generally describes how wind speed intervals are mapped to power
intervals. If ∆u is regarded as a small deviation between predicted and measured wind
speed Equation (2.5) illustrates that the power curve scales errors in the wind speed ac-
cording to its local derivative. Thus, whether deviations in the wind speed are amplified
or damped depends on the magnitude of the wind speed.
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Figure 2.1: Power curve of a pitch regulated wind turbine (solid line). For three different wind speeds
conditional pdfs, pdf(umeas|upred,i), are illustrated on the x-axis which have mean=upred,i and standard
deviation 1. The corresponding pdf(P (umeas)|P (upred,i)) constructed from Equation (2.5) are plotted on
the y-axis. The pdfs are not normalised for better visualisation. For small and large wind speeds the
Gaussian wind speed distributions are strongly deformed and no longer symmetric. For medium wind
speeds the pdf of the power is significantly flatter and broader than the pdf of the wind speeds.

Using Equation (2.1) the probability to find a measurement value u in the interval
[umeas, umeas + ∆u] with upred confined to [upred, upred + ∆u] is

w := pdf(umeas|upred) pdf(upred) (∆u)2. (2.6)

If the area (∆u)2 around (umeas, upred) is mapped to (∆P )2 around (P (umeas), P (upred))

according to Equation (2.5) the probability w is preserved because all events that are
recorded in the wind speed intervals also occur in the power output intervals. Hence,

w = pdf(umeas|upred) pdf(upred) (∆u)2

!
= pdf(P (umeas)|P (upred)) pdf(P (upred)) (∆P )2

= pdf(P (umeas)|P (upred)) pdf(P (upred))

(

dP

du
(umeas)∆u

) (

dP

du
(upred)∆u

)

.

(2.7)
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If Equation (2.7) is solved for the desired pdfs of the power output one obtains

pdf(P (umeas)|P (upred)) pdf(P (upred))

=pdf(umeas|upred) pdf(upred)

(

dP

du
(umeas)

)−1 (

dP

du
(upred)

)−1

. (2.8)

This equation provides the essential relation between the distributions of wind speed
on the one hand and power on the other hand. As expected the power curve plays a
crucial role in connecting the statistical properties of both quantities. Note that the di-
vergence in Equation (2.8) for (dP/du)−1 → ∞ is compensated by ∆P → 0 according to
Equation (2.5) such that the probability w is always well defined.

Figure 2.1 illustrates the effect of Equation (2.5) for three different Gaussian wind
speed distributions with same standard deviations. For small and large wind speeds the
Gaussian wind speed distributions are strongly deformed and no longer symmetric. For
medium wind speeds the pdf of the power is significantly flatter and broader than the
pdf of the wind speeds.

The next steps towards a full description of the statistics of the power prediction error
in terms of the wind speed distributions are now right ahead: Equation (2.8) can be used
to create the functions pdf(P (umeas)|P (upred)) for each P (upred). Then these functions
are weighted according to the frequency distribution of P (upred) and their variables are
shifted analogous to transformation (2.3). Finally, these shifted functions are added and
the unconditional pdf of the power prediction error is reconstructed.

Equations (2.7) and (2.8) suggest that the basic elements in this reconstruction proce-
dure can be defined by

F (P (umeas), P (upred)) := pdf(umeas|upred) pdf(upred)

(

dP

du
(umeas)

)−1(dP

du
(upred)

)−1

(2.9)

Note that this definition is an intermediate step that conveniently summarises all math-
ematical terms involved. The functions F contain the information how the conditional
pdf of the wind speed has to be transformed to the corresponding power pdf and which
weight this pdf has. Once the right-hand side of Equation (2.9) has been used F is de-
fined in the power domain, i.e. the independent variables are P̃meas := P (umeas) and
Ppred := P (upred).

The notation P̃meas denotes the measured power obtained by plugging the measured
wind speed at hub height into the theoretical power curve. Generally, P̃meas slightly
differs from the direct measurement of the power output, Pmeas, because the power curve
of the local wind turbine might deviate from the theoretical curve or additional errors that
are not covered by the power curve come in.

Analogous to the transformation of the conditional wind speed distribution in Equa-
tion (2.3) the first variable in each of the functions F is shifted according to

Pmeas 7→ ǫP where ǫP = Ppred − P̃meas. (2.10)
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In the final step the unconditional distribution of the power prediction error is obtained
by the integration

pdfrec(ǫP ) =

∫ ∞

0
F (ǫP , Ppred) dPpred. (2.11)

Despite having a slight touch of looking complicated this method has some benefits.
It exclusively provides the error statistics of the power prediction based on three ingre-
dients: the conditional distributions of the wind speed prediction, the derivative of the
power curve and the distribution of the predicted wind speeds. For practical purposes
these three components are either given or can be estimated. The power curve is typi-
cally known numerically such that the derivative can easily be obtained. The distribution
of the predicted wind speed is normally provided by the NWP output but if not it can
be estimated from prediction data of nearby sites or from Weibull distributions of the
measurement data. If the conditional pdfs of the wind speed are not known for the site
in question it can be assumed that they are Gaussian with mean values and standard
deviations obtained by a qualified guess.

The concepts developed in the this section are now applied to data from real sites
to check if the relations between the wind speed and the power distributions can be
confirmed with finite sets of data points.

2.3 Conditional PDF of wind speed data

The conditional pdfs of the wind speed are calculated as described by Equation (2.1), i.e.
the distribution of the measured values is determined with the corresponding predicted
value confined to a certain interval. The range of the occurring upred is divided into
equidistant bins with width ∆u which is typically set to 1 m/s. The boundaries of the
bins are given by [upred,i −∆u/2, upred,i + ∆u/2]. Hence, upred,i denotes the middle of the
bins.

In Figures 2.2 and 2.3 the conditional pdfs of the wind speed at two sites with differ-
ent average wind speeds are shown based on measured and predicted data of the year
1996. In these examples the 36 h values of prediction and measurement are used but the
qualitative behaviour of the other prediction times is comparable.

The distributions for small wind speeds are unsymmetric and far from being normal.
This is due to the fact that the wind speed is always positive and deviations from upred,i

are limited towards lower wind speeds but not towards larger ones. With increasing
upred,i the pdfs become rather symmetric.

Compared to a normal distribution with same mean and standard deviation these
pdfs can be considered as being approximately Gaussian although the number of data
points available per pdf is relatively small. Two statistical tests are used to systematically
check the normality of the conditional pdfs. As expected the hypothesis that the pdf is
Gaussian is rejected by the χ2-test and the Lilliefors-test for distribution functions with
small upred,i. For larger prediction values both tests indicate normality: in Figure 2.2 for
the pdfs with 2.5 m/s ≤ upred,i ≤ 6.5 m/s and in Figure 2.3 for 2.5 m/s ≤ upred,i ≤

8.5 m/s.
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Figure 2.2: Conditional probability density functions of 36 h wind speed values at site with low average
wind speed (site 1). The different pdf(umeas|upred,i) (shaded areas) are stacked where upred,i has been varied
in steps of 1 m/s, i.e. ∆u = 1 m/s. The vertical line in each plot indicates the corresponding upred,i. For
comparison a normal distribution having the same mean and standard deviation as pdf(umeas|upred,i) is
shown (solid lines). For pdfs with 2.5 m/s ≤ upred,i ≤ 6.5 m/s the statistical tests indicate a Gaussian
distribution. Note that conditional pdfs for large upred,i containing very few data points have been omitted.
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Figure 2.3: As Figure 2.2 but for a high wind speed site (site 2). Again the pdfs tend to become similar
to normal distributions with increasing upred,i which is confirmed by the tests for pdfs with 2.5 m/s ≤
upred,i ≤ 8.5 m/s. Note that the number of data points decreases for larger upred,i and conditional pdfs
containing very few data points have been omitted.
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It is apparent from Figures 2.2 and 2.3 that in most cases the mean of the conditional
pdfs does not correspond to upred,i which is related to the systematic errors in the data.
This is further illustrated in Figure 2.4 where the means of the pdf(umeas|upred,i) are plot-
ted versus upred,i. For site 1 (Figure 2.4 (top)) the mean values are mostly above the
diagonal, i.e. the predictions are on average smaller than the measurements, leading to a
negative bias. In contrast to this the majority of mean values for site 2 (Figure 2.4 (bot-
tom)) is below the diagonal which corresponds to an overall positive bias.
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Figure 2.4: The mean of pdf(umeas|upred,i) versus upred,i together with the actual data points (upred, umeas)
for the 36 h prediction. Top: site 1, bottom: site 2. In both cases the mean values are located on the linear
regression line based on the data points for upred > 2 m/s. Their deviation from the diagonal (dashed line)
reflects the systematic errors.
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For upred,i > 2 m/s the mean values increase linearly with upred,i but with slopes
different from unity indicating that the predictions systematically underestimate or over-
estimate the measurements. Within their error bars the mean values follow a line given
by linear regression of all data points except for large upred,i where only few data points
are available. Thus, the mean values of the conditional pdfs behave as expected in that
they reflect, on a bin-wise level, the systematic errors of the complete time series.
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Figure 2.5: The standard deviations of pdf(umeas|upred,i) normalised by the mean measured wind speed
versus upred,i for site 1 (top) and site 2 (bottom). The prediction time is again 36 h. The solid line illustrates
the unconditional relative standard deviation of the error. The error bars provide the confidence intervals in
calculating the standard deviation of the conditional pdfs. While for site 1 no clear trend is detectable there
seems to be an increase of the relative standard deviations of the conditional pdfs with the predicted wind
speed for site 2. However, this is not systematic, neither for this prediction time at other sites nor for the
other lead times at site 2.

12



ANEMOS Deliverable Report D3.1bis

The pdfs in Figure 2.2 and 2.3 seem to become wider for increasing upred,i suggesting
that the deviations of umeas from upred,i, i.e. the prediction errors, grow on average which
is equivalent to a decreasing forecast accuracy. This directly leads to the question if the
accuracy of the wind speed prediction depends on the magnitude of the wind speed. In
this investigation no final answer can be given as the behaviour for different sites and
prediction times is rather inconsistent.

Consider the two examples for site 1 (Figure 2.5 (top)) and site 2 (Figure 2.5 (bottom)).
While at site 1 (top) the relative standard deviation of the pdf(umeas|upred,i) has no appar-
ent trend and oscillates around the corresponding relative sde, the pdf of site 2 (bottom)
seems to have an increasing standard deviation. But such a clear trend cannot be detected
for other prediction times at this site.

Generally, most sites show some variation of the standard deviation of pdf(umeas|upred,i)
over upred,i with relative standard deviations that deviate of the order 0.1 from the uncon-
ditional sde. The pdfs for upred,i ≤ 2 m/s are typically unsymmetric such that their stan-
dard deviation cannot be interpreted as 68%-confidence interval. Due to the limitation
of these pdfs at the lower boundary their standard deviation is expected to be smaller
compared to that one of the symmetric pdfs.

These considerations lead to the result that there is only a weak, if any, systematic
dependence of the accuracy of the wind speed prediction on the wind speed.

2.4 Estimating the distribution of the power prediction error

In this section it is shown that the distribution of the power output can indeed be de-
rived from the conditional pdfs of the wind speed together with the power curve. Based
on the empirical pdfs of the wind speed found in the above section the unconditional
distribution of the power prediction error can be reconstructed.

First of all, the quality of the reconstruction procedure is tested against a synthetic er-
ror distribution, denoted as pdftest(ǫP ), generated by using ǫP := P (upred) − P (umeas),
i.e. using the theoretical power curve only. As Figure 2.6 illustrates for the case of
site 1 the reconstruction of the error distribution that was calculated with Equations (2.9)
and (2.11) and the conditional pdfs of the wind speed obtained in the last section (Fig-
ures 2.2 and 2.3) almost exactly recovers pdftest(ǫP )). Thus, though the procedure of first
decomposing the wind speed data into conditional distributions, scaling them with the
reciprocal derivative of the power curve and reassembling everything again leaves some
space for numerical artefacts and inaccuracies due to small data sets it is robust enough
to produce the expected results.

To be of practical use the more interesting test of the reconstruction is against the
“real” distribution, pdfreal(ǫP ), of the prediction error. Figure 2.7 shows the estimated
pdfrec(ǫP ) for site 1 (top) compared to the distribution, pdfreal(ǫP ), of the forecast error
based on measurements of the actual power output. The overall agreement between the
two distributions is rather good except for small ǫP . The reconstructed pdf covers the
typical features of the original distribution in that it is unsymmetric in the same way and
has the typical peak for small deviations.

As the error bars of pdfreal(ǫP ) indicate the reconstructed distribution does not per-
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fectly match the real one in all of the bins, in particular for site 2 (Figure 2.7 (bottom)).
This deviation indicates additional sources of error that are not covered by considering
the power curve effect only.

The results so far explain how the power prediction errors are statistically distributed
and why the distribution has this special shape. If measured and predicted data of the
power output are available there is no point in putting any effort in calculating the re-
constructed pdfrec(ǫP ) as the error distribution is already available. However, if no data
or only wind speed data is at hand the reconstruction can be used to get an idea how
the error distribution of the power might look like. The minimum requirements to cal-
culate this estimated distribution comprise four important aspects: First, the reasonable
assumption that the conditional pdfs of the wind speed are all Gaussian (as discussed in
section 2.3) with the same standard deviation, σ(ǫu). Second, a qualified guess concern-
ing the value of σ(ǫu), e.g. from the weather service, as in [85], or nearby sites. Third,
the distribution of the wind speeds at the desired site and, finally, the power curve of the
wind turbine has to be available.
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Figure 2.6: Consistency check of the reconstruction procedure according to Equations (2.9) and (2.11) for
the 36 h prediction at site 1. ǫP is normalised to the rated power. The reconstructed pdfrec(ǫP ) is compared
to pdftest(ǫP ) which is based on evaluating ǫP := P (upred)−P (umeas). These two pdf should be identical.
However, they show small deviations for the bins around ǫP = 0.

With the considerations of this section the conditional pdfs, pdf(ǫP |Ppred), can in prin-
ciple be constructed and, hence, for each prediction value Ppred an individual estimate of
the error distribution around this value could be supplied. However, the data sets that are
used do not allow for a proper verification of the individual pdf(ǫP |Ppred) with measured
data as, in particular, for medium and high power outputs the number of data points is
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rather small. Hence, the difficulties in using statistical tests that already occurred for high
wind speeds in section 2.3 are more severe with regard to power. Thus, in this investi-
gation only the unconditional distribution of the power prediction error is reconstructed
and compared to measurements because in this case all available data points at a site for
a specific prediction time can be used.

In the next section it is shown that under simplifying assumptions a good estimation
of the individual error bars of a specific wind power prediction can be derived.

2.5 Simple modelling of the power prediction error

Under the assumption that the prediction error of the underlying wind speed prediction
does not change much over the range of typical wind speeds as discussed in section 2.3
the accuracy of the power forecast at a particular wind speed expressed as standard de-
viation of the error, sde, can be described rather well with a very simple approach.

For small deviations between predicted and measured wind speed the sde of the
power prediction is linearised using a Taylor expansion at the predicted wind speed upred

which leads to a “conditional” wind speed dependent error estimate given by

σ(ǫP )|upred
=

∣

∣

∣

∣

dP

du

∣

∣

∣

∣

upred

σ(ǫu). (2.12)

This equation is rather basic in the sense that it takes only the effect of the local derivative
dP/du(upred) of the power curve into account and uses the average sde, σ(ǫu), obtained
from pdf(umeas|upred,i) as accuracy for all wind speeds. The approach neglects that devi-
ations between the certified, i.e. theoretical, power curve and the real power curve might
occur which can have a significant influence on the prediction error. But this source of
error can only be eliminated by using the corresponding measurement data to correct for
these systematic deviations while Equation (2.12) generally models the error amplifica-
tion effect of the power curve.

In Figure 2.8 the error of the power prediction where the corresponding predicted
wind speed is confined to intervals of width 1 m/s for the two sites site 1 and site 2 is
plotted versus the predicted wind speed. The bars denote the bin-wise standard devia-
tion of the power prediction error, sde(ǫP ) = σ(ǫP )|upred

at a particular wind speed. Again
one year of data has been used. Obviously, the accuracy of the power prediction depends
on the predicted wind speed. This is mainly due to the power curve effect as the solid
line calculated from Equation (2.12) indicates.

At site 1 this simple model describes rather precisely the behaviour of the actual
power prediction error as illustrated in Figure 2.8 (top). However, at site 2 (Figure 2.8
(bottom)) this modelling approach does not lead to an accurate description of the pre-
diction uncertainty. At this site the deviations between predicted and measured power
output are not completely explained by the linear amplification of small wind speed er-
rors according to Equation (2.12) due to differences between the certified and the real
power curve. But for many sites the model provides a rather good estimation of the
wind speed dependent power prediction error.
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Figure 2.7: Comparison of reconstructed pdfrec(ǫP ) according to Equation (2.11) to the distribution of the
actual measured power output pdfreal(ǫP ) as it was recorded for the 36 h prediction at site 1 (top) and
site 2 (bottom). ǫP is normalised to the rated power. As the error bars of the real distribution indicate the
agreement between the two pdfs for site 1 is rather good with pdfrec covering the typical features of pdfreal
except the large peak for very small ǫP . The two pdfs at site 2 show differences for small positive ǫP which
indicate that the reconstruction model based on the power curve effect does not cover all error sources.
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Figure 2.8: Standard deviation of bin-wise power prediction error versus wind speed for the 36 h prediction
at site 1 (top) and site 2 (bottom). The bars denote the sde between predicted and measured power output
conditioned on wind speed intervals of width 1 m/s. For medium wind speeds up to 12 m/s the forecast
error increases. At site 1 this behaviour is well approximated by the product of the derivative of the power
curve and the wind speed error (solid line) according to Equation (2.12) while at site 2 the simple modelling
approach underestimates the power prediction error for larger wind speeds which is due to effects not covered
by this model.
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The amplification of the error caused by the local slope of the power curve is clearly
detectable in the sde of the power forecast and can be used to model the prediction error
depending on the wind speed. Figure 2.9 demonstrates how this can be implemented
in a power prediction system like Previento. The specific uncertainty of each prediction
given by Equation (2.12) is illustrated by the shaded area around the predicted value.
It is calculated by using the derivative of the certified power curve and the σ(ǫu) corre-
sponding to each prediction time. Thus, to apply Equation (2.12) for prediction purposes
historical data is needed to determine the statistical error, σ(ǫu), of the underlying wind
speed prediction.

This uncertainty interval provides additional information to the user and enables him
to assess the risk of a wrong prediction. Of course, this procedure has to be refined in the
future by taking the unsymmetric pdfs of the power error into account (see section 2.4).
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Figure 2.9: Times series of prediction (“o”) and measurement (solid line) over a period of 18 days. The
shaded area is the uncertainty estimate given by Equation (2.12). Typically, the uncertainty interval around
the predicted value is small for low predictions, i.e. flat slope of the power curve, and large for predictions
between 20% to 80% of the rated power where the power curve is steep. Of course, for power outputs near
the rated power (not shown here) the uncertainty again decreases.
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2.6 Conclusion

This chapter contains a first approach towards a situation dependent assessment of the
prediction error where wind speed is the indicator that characterises the forecast situa-
tion.

Using wind speed as additional parameter a detailed analysis of the statistical proper-
ties of the prediction error shows that the conditional probability distribution functions
(pdf) of the wind speed error are mainly Gaussian in the range of wind speeds that is
important for wind power applications. The mean values of these pdfs are as expected
on the line given by linear regression of the scatter plot reflecting the systematic error
in the prediction. The more interesting question whether the prediction error expressed
as standard deviation around these mean values increases with increasing wind speed
cannot finally be answered here as the data for the different sites and prediction times
does not show a consistent behaviour. However, the results of this chapter suggest that
there is only a weak, if any, systematic dependence of the prediction error measured as
the standard deviation of the differences between prediction and measurement on the
magnitude of the wind speed.

A main result of this chapter is that the non Gaussian distribution of the power pre-
diction error can be modelled. Understanding the mechanism that transforms initially
Gaussian wind speed error distributions into strongly non Gaussian power error distri-
butions allows to easily estimate the pdf of the power prediction error for any wind farm
without knowing the actual predictions and measurements of the power output.

The approximated reconstruction of the pdf of the power forecast is based on three
ingredients: the pdf of the measured wind speed conditioned on the predicted wind
speed, the frequency distribution of the wind speed prediction and the power curve of the
wind turbine. However, if for practical purposes the conditional pdf of the wind speed
at a site is not available it can be estimated by assuming that the distribution is Gaussian
with a standard deviation of the wind speed error taken from a nearby site or from the
publications of the Weather Service (e.g. [85]). The exact frequency distribution of the
predicted wind speed could be replaced by either the distribution of the measurements or
distributions from nearby synoptic stations. This means that an estimate of the statistical
distribution of the power prediction error at a site can be obtained using information that
is readily available for existing wind farms and can even be obtained prior to the erection
of the wind farm at the desired location. This is, for example, convenient to assess the
prediction error for future offshore wind farms.

Of course, the “real” distributions of the power prediction errors given by comparing
predicted and measured power output might look different. The method derived here
does only consider the effect of the power curve neglecting other sources of error. In par-
ticular, the power output is modelled by plugging wind speeds into the certified power
curve representing the average behaviour of the wind turbine under standard conditions.
However, experience shows that the output of individual turbines can well deviate sig-
nificantly from their certified power curves for various reasons [67]. Thus, for practical
use the limitation of this reconstruction is clearly that it is oblivious to these additional
error sources beyond wind speed. Nevertheless, it sheds some light on the mechanism
that produces the typical non Gaussian distributions of the power prediction error.
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A relatively simple model that describes the dependence of the power prediction er-
ror on the wind speed with a linearised approach is used. It shows that most of the error
can be explained by the influence of the power curve that amplifies the rather constant
prediction error of the wind speed according to its local derivative. This procedure can
directly be implemented into Previento to provide situation dependent uncertainty esti-
mates for each prediction time.

These uncertainty intervals are symmetric which is a major shortcoming of this sim-
ple model because it is already clear that the distributions of the power prediction error
are non Gaussian and unsymmetric. However, to provide good estimations of the con-
ditional power distributions around each prediction value a lot information has to be
recorded concerning the statistics of the specific site. Therefore, the simple model sug-
gested here is only the first step towards a comprehensive description of the situation
based error statistics.
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Chapter 3

Relating the forecast error to

meteorological situations

Abstract

The investigation in this chapter focuses on the quantitative relation between the error of the
wind speed prediction and the corresponding specific meteorological situation. With methods
from synoptic climatology an automatic classification scheme is established using measurements
of wind speed, wind direction and pressure at mean sea level to characterise the local weather
conditions at a site. The classification procedure involves principal component analysis to effi-
ciently reduce the data to the most relevant modes. Cluster analysis is used to group days with
similar meteorological conditions into common classes. A comparison of these clusters with large-
scale weather maps shows that typical weather situations are successfully captured by the clas-
sification scheme. The mean forecast error of the wind speed prediction of the German Weather
Service is calculated for each of the clusters. It is found that different meteorological situations
have indeed significant differences in the prediction error measured by a daily rmse where the
maximum rmse can be by a factor of 1.5 to 1.7 larger than the minimum rmse. As expected, high
uncertainties in the forecast are found in situations where rather dynamic low pressure systems
with fronts cross the area of interest while stationary high pressure situations have significantly
smaller prediction errors. This chapter is taken from [57].

3.1 Introduction

The investigation in this chapter continues to follow the idea of evaluating the forecast
error for specific weather situations. But in contrast to the previous chapter the meteoro-
logical conditions will now be described by a far larger set of variables than only wind
speed to include more details of the atmospheric state and its temporal evolution over
one day. The aim is to really distinguish different weather classes and relate them quan-
titatively to their typical prediction errors.

It is a well-known fact that the performance of numerical weather prediction (NWP)
systems is not equally well for every meteorological situation and that their accuracy de-
pends on the situation that is to be forecast. In an overview of the prediction uncertainty
of weather and climate forecasts Palmer [77] points out that “certain types of atmospheric
flow are known to be rather stable and hence predictable, others to be unstable and un-
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predictable”. Thus, the challenge is to know in advance how predictable the current
meteorological situation is.

There are already different approaches how to include information about the chang-
ing reliability of the numerical forecast into the prediction. A very popular one is the use
of ensemble predictions where the chaotic properties of the non linear equations of mo-
tion of the meteorological variables are exploited, e.g. described in [77, 42]. Lorenz [60]
demonstrated that low dimensional non linear weather models are sensitive to small
changes in the initial conditions which is the typical indication of deterministic chaos.
Hence, to get an overview over the possible range of weather situations that can evolve
from a given situation the initial condition of the NWP is perturbed. Then the NWP cal-
culates separate predictions for each initial condition leading to an ensemble of possible
outcomes. Thus, ensemble forecasts provide a range of possible weather situations that
can occur with a certain probability. The difficult part is to generate suitable ensembles
allowing for a statistical interpretation of the results which might differ profoundly.

Ensemble forecasts are computationally expensive and, therefore, for operational use
mainly generated by large meteorological institutes such as the European Centre for
Medium Range Weather Forecasts (ECMWF). However, Landberg et al. [54] used a sim-
pler version of ensemble predictions in connection with wind power application which
they denoted as “poor man’s ensemble forecast”. The idea is to take the spread between
different prediction runs, e.g. at 00 UTC and 12 UTC, calculated for the same points of
time in the future. The larger the deviation between the prediction runs the greater the
uncertainty of the prediction. This concept has recently been enhanced by Pinson and
Kariniotakis [80, 79]. They established a continuous risk index from the spread of sev-
eral forecast runs of the wind speed prediction to derive the corresponding degree of
uncertainty connected to the power prediction.

The technique used in this chapter to assess the uncertainty of a specific prediction
is different from the ensemble approach as it is based on a classification scheme of the
weather situation which is not directly related to the prediction system. The approach
here is to describe the situation of each day by a suitable set of local meteorological vari-
ables, then sort it into a certain category, and associate each of the categories with a typical
prediction error derived from historical data.

Intuitively, at least two types of meteorological situations over Northern Europe are
expected to show considerable differences in terms of the accuracy of the wind speed
prediction. Weather situations with strong low pressure systems coming in from the
Atlantic Ocean are supposed to be of the unstable type that is hard to predict. These
situations can be very dynamic as the advection speed of the low is typically rather large
and, in addition, its frontal zones may cause strong winds. In dynamic cases the real
situation can evolve quite differently from the one that had been predicted. In contrast
to this high pressure systems with typically moderate wind speeds are rather stationary
and can persist for several days which should make it easier for the NWP to provide a
reliable prediction.

It is the purpose of this chapter to establish a method that automatically generates
useful weather classes and, hence, implicitly defines what “strong low” or “stationary
high” means in terms of the local conditions at different sites. Moreover, the investigation
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here aims to answer the question how large the various prediction errors are and whether
they differ significantly for different meteorological conditions.

3.2 Methods from synoptic climatology

The techniques that are applied in this investigation are well established in synoptic cli-
matology. In a concise overview over the subject Yarnal [94] points out that “synop-
tic climatology relates the atmospheric circulation to the surface environment”. Hence,
this branch of climatology explicitly aims at linking meteorological conditions to exter-
nal variables, such as concentration of air pollutants, which is exactly the type of problem
that is addressed in this work.

Quite a variety of powerful methods has been developed in this field and tested in nu-
merous applications [4, 94, 86]. The main principles are very similar. The first step is to
identify typical structures or patterns of the atmospheric circulation in order to develop
a classification scheme that is only based on meteorological variables. After the classifi-
cation is established the statistical or deterministic relationship between these structures
and a surface variable of interest is investigated. Normally, this variable is non meteoro-
logical in the sense that it does not describe the state of the atmospheric flow.

Regarding the classification scheme there are two main approaches. On the one hand
manual methods where a meteorologist evaluates the synoptic situation within a certain
framework according to his experience and on the other hand automatic schemes which
use computer-based algorithms to sort meteorological data into different classes. A well-
known manual classification scheme for Central Europe is the catalogue of “Grosswet-
terlagen” by Hess and Brezsowski [31]. It comprises 29 large scale weather situations
which are distinguished by their different spatial arrangement of the pressure systems.
One disadvantage in using this cataloque is that the large number of pre-defined weather
classes requires times series with many data points in order to obtain statistically relevant
results [58].

In contrast to this, automatic schemes typically exploit correlations between patterns
or use eigenvector techniques such as principal component analysis (PCA) to extract syn-
optic weather classes from numerical data. Yarnal [94] points out that both the manual
and the automatic methods contain a certain degree of human subjectivity because some-
one has to decide, e.g., on the set of variables and the number of classes.

The method chosen in this work to analyse how the forecast error is related to the
weather type relies on computer-based classification techniques and follows in principle
an investigation carried out by Shahgedanova et al.[86]. They used principal component
analysis in combination with cluster analysis of surface and upper air meteorological data
to derive a classification scheme of the synoptic situation in Moscow where PCA was
used for data reduction and cluster analysis to sort similar days into common groups.
These weather types were then connected to typical concentrations of air pollutants such
as CO and NO2. It was found that certain weather patterns result in significantly high
levels of urban air pollution.

In contrast to Shahgedanova et al. the set of meteorological variables used here will
be smaller with no upper air data involved. The role of the pollutant will be played by
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the forecast error. In the following the use of PCA and cluster analysis is explained.

3.2.1 Principal component analysis (PCA)

Principal component analysis (PCA) is used to extract the relevant eigenmodes from the
meteorological data. This technique produces eigenmodes which can be ordered accord-
ing to the degree of variance they explain in the data. Hence, the modes that contribute
most to the time series can be selected for the further analysis which allows to effectively
reduce the amount of data. The weather situation of each day can then be approximately
expressed as a linear combination of these eigenmodes.

The variables used here are the horizontal wind vector ~u = (u, v) and the atmospheric
pressure at mean sea level (pmsl). These are the natural candidates to start with as they
are closely related to the wind field. To account for temporal variations over one day
the variables are taken at 0, 6, 12, 18, 24 UTC. Several values of the wind vector per day
resolve changes in wind direction and speed, e.g. during the passage of a frontal system.
This provides the possibility of separating dynamic from static weather situations. The
record of the temporal variations of pmsl can partly compensate for the fact that spatial
pressure gradients which are the main driving force of the wind are not available in this
investigation.

The temperature that is often included to find synoptic indices is not considered here.
This is done because absolute temperature is mainly used to determine the type of air
mass, e.g. by Shahgedanova et al. [86], but it is not directly related to the wind field.
Moreover, temperature tends to be a dominating variable that requires the data sets to be
split into winter and summer part. But doing so would leave only half the data points
for the analysis which makes it difficult to have significant results in the end. However,
for further investigations it would be desirable to include temperature and humidity
to be able to detect fronts with more parameters than changes in the wind vector. Of
particular interest for further investigations are, of course, temperature differences at
different heights to assess atmospheric stratification (c.f. Focken [29]).

The measured data are written into a matrix M where the columns contain the dif-
ferent variables and each row corresponds to one day. The measurements at the various
day times are considered as separate variables. As wind vector and surface pressure have
very different orders of magnitude both are normalised with their standard deviation and
pmsl is additionally centralised by subtracting the mean value. Hence, M is given by:

M =







u1,0 · · · u1,24 v1,0 · · · v1,24 pmsl1,0 · · · pmsl1,24
...

...
u365,0 · · · u365,24 v365,0 · · · v365,24 pmsl365,0 · · · pmsl365,24






(3.1)

where the subscripts denote the day of the year and the day time. M is the so-called
data matrix with dimension 365 by 15 having one row for each day of the year with 15
measurements per day at the times 0 h, 6 h, 12 h, 18 h and 24 h UTC.

The PCA of matrix M is carried out numerically by diagonalising the so-called co-
variance matrix C = M tM . The 15 eigenvectors, ~pi, of C are the desired principal com-
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ponents (PC) of M while the eigenvalues, λi, of C are the weights λi of the different com-
ponents that express the degree of variance a particular PC contains. A full description
of this procedure can be found in Broomhead and King [11].

The set of principal components {~pi} with i = 1, . . . , 15 constitutes a new orthonormal
basis of the phase space of the full set of data points. The ordering of the PC according
to the eigenvalues, λi, allows to select only the first few PC spanning the subspace where
most of the relevant dynamics takes place. The number of relevant modes, N , to be
considered for further analysis is not precisely defined and has to be inferred from the
spectrum of eigenvalues and the corresponding PC. In this investigation the visual in-
spection of these quantities and the cumulative variance

∑

λi of the first N eigenvalues
will be used as criteria to decide on the number of modes to be used. Hence, by trans-
forming to new coordinates and reducing the degrees of freedom PCA efficiently codes
the information contained in the meteorological raw-data and in that sense acts as a data
reduction technique.

The use of PCA as a data reduction technique means that the eigenvalue spectrum is
mainly used to account for the degree of variance contained in each of the corresponding
eigenmodes. This is a statistical or climatological interpretation of the eigenspectrum and
not a non linear systems approach. In the context of dynamic systems a similar technique,
time-delay embedding, is also applied as a tool to decompose phase space dynamics in
different modes with the aim of extracting the degrees of freedom of the non linear sys-
tem, e.g. described in detail by Broomhead and King [11] or Kantz and Schreiber [47].
However, the approach used in this work and in particular the construction of the data
matrix M does not aim at providing a delay embedding of the time series as the sam-
pling intervals are not adapted for this purpose and the number of data points is far too
low. Hence, the number of eigenmodes provided in this context cannot contribute to the
question how many degrees of freedom the weather or climate system has as discussed,
e.g., by Nicholis and Nicholis [69] and Grassberger [35].

After a choice concerning the number of relevant PC is made, the data in M is trans-
formed to the reduced basis such that each day can be represented as a linear combination
of the selected PC. Let {~qi}, i = 1, . . . ,N , be the basis chosen from the first N PC of the
full eigenvector basis, {~pi}, of M . Then

Q := (~q1 . . . ~qN ) (3.2)

is the transformation matrix that can be used to easily project the data in M on the new
basis by a multiplication from the right

X := MQ. (3.3)

The entries in X are the scalar products xij = ~mi·~qj where ~mi is the i-th row of M . In other
words xij is the contribution of the j-th PC to the i-th day. Consequently, each day ~mi can
be approximately (because only a N -dimensional subspace is considered) expressed by

~mi ≈
N

∑

j=1

xij~qj. (3.4)
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Thus, the 365 by N matrix X is the reduced data matrix that is thought to contain most
of the relevant meteorological information of one year of data. However, so far nothing
really happened in terms of the classification scheme because the data has merely been
recoded. The next step applied to the reduced data set will be cluster analysis.

3.2.2 Cluster analysis

Cluster analysis is a standard method used to group objects with similar properties to-
gether. As described in a concise overview by Everitt [27] it has a wide range of tech-
niques and is often applied in climatological investigations [94, 46, 86].

In this work the aim is to obtain a rather small number of clusters which contain days
with similar meteorological conditions being different from the days in the other clusters.
Of course, the clusters found are required to represent typical weather classes.

The type of cluster analysis used here is called hierarchical or agglomerative. It acts
iteratively on the phase space by computing the distances between each pair of objects in
the phase space and then joining the closest two objects to a new cluster. After the new
cluster is formed the procedure is repeated. Starting point is a situation where all points
in the phase space are considered as separate clusters. As the final iteration merges all
clusters into one group the process has to be stopped when a certain number of clusters
is reached. The criterion to stop the iterations is derived from observing the growing
distances between the clusters.

Though the basic concept is rather straightforward there are profound differences in
the results of various clustering procedures because the key point of this technique is how
distances between clusters are defined and under which rule new clusters are formed.
First of all, a metric has to be chosen that evaluates distances between single points in the
phase space. Here the Euclidean metric (Equation (3.5)) is applied as there is no apparent
reason for a different one. A more crucial point is the definition of distances between
clusters. As the type of distance measure implies which two clusters will be joined next it
is referred to as “linkage method”. Three typical linkage methods are briefly introduced
using the following notations.

Let ~xi := (xi,1, . . . , xi,N ) with i = 1, . . . , 365 denote the coordinate vector describing
a point in the N dimensional reduced phase space. The distance d(~xi, ~xj) between two
states is given by the Euclidean measure

d(~xi, ~xj) =

√

√

√

√

1

N

N
∑

q=1

(xi,q − xj,q)2. (3.5)

After a number of NA phase states has been joined into one cluster, CA, the members of
this cluster will be denoted as ~xA

r where r = 1, . . . ,NA is the new index within CA.

Complete linkage method

To evaluate the distance between two clusters CA and CB in the complete linkage method
all pairs of Euclidian distances between members of CA and CB are computed. Then the
maximum distance that is found between the individual members is used as distance
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between the two clusters. Hence,

dcomplete(CA, CB) := max
(

d(~xA
r , ~xB

p )
)

where (~xA
r , ~xB

p ) ∈ CA × CB . (3.6)

Average linkage method

Average linkage is a combination of complete linkage as described above and its comple-
mentary definition, called single linkage, where the minimum of the distance between
cluster members is taken. In average linkage the mean value of the individual distances
is used to define the cluster distance between two clusters CA and CB , i.e.

daverage(CA, CB) :=
1

NANB

NA
∑

r=1

NB
∑

p=1

d(~xA
r , ~xB

p ) (3.7)

where NA and NB are the respective numbers of elements in CA and CB .

Ward’s linkage method

Ward’s method is also referred to as minimum variance method [46] as it evaluates the
change of within-cluster variance if two clusters are merged.

d2
ward(CA, CB) :=

NA NB

NA + NB
d
(

~xA, ~xB
)2

(3.8)

where ~xA =
∑NA

r=1 ~xA
r is the centre of mass of cluster CA and ~xB the one of CB .

Kalkstein et al. [46] thoroughly investigated average linkage, Ward’s linkage and a
third technique, centroid linkage, that is not used here. They found that for weather
classification purposes average linkage produced the “most realistic synoptic groupings”
as it provides rather homogeneous groups of days with similar meteorological conditions
and sorts extreme events into separate clusters instead of combining them into a common
class. In contrast to the other techniques average linkage minimises the within-cluster
variance, i.e. the mean variance among the days within one cluster, and maximises the
between-cluster variance, i.e. the mean variance between the centres of mass of different
clusters. Shahgedanova et al. [86] also confirmed the usefulness of average linkage in
their investigation.

Ward’s linkage on the other hand tends to produce clusters of equal size and, there-
fore, sorts days with extreme weather conditions together with less extreme days which
“blurs distinctions between the types” [46]. Thus, this method was considered as in-
ferior compared to average linkage to produce meaningful synoptic classes. However,
Yarnal [94] provides classification problems which are quite comparable to those by Kalk-
stein et al. [46] and Shahgedanova et al. [86] but where Ward’s method is superior to av-
erage linkage which leads the conclusion that both methods should be tested.

In this work average and Ward’s linkage are used as they have been successfully
applied in previous investigations. Additionally, complete linkage is also applied.
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3.2.3 Daily forecast error of wind speed

For the analysis of the forecast error a new error measure is introduced that evaluates the
performance of the prediction system over one day:

rmseday =

√

√

√

√

1

4

∑

tpred

(

upred,tpred
− umeas,tpred

)2
with tpred = 6h, 12h, 18h, 24h (3.9)

where upred,t and umeas,t are predicted and measured wind speed.
It is, of course, desirable to also include predictions with horizons beyond 24 h into

the error measure. However, higher lead times have not been included so far because
only two larger prediction times, 36 h and 48 h, are available in the investigated data set
which is only half the number of data points for the analysis compared to the period 6 to
24 h. Hence, this first approach is restricted to the earlier lead times.

This “daily error” assigns one single value to each day in a cluster which is analo-
gous to using the daily concentration of a pollutant by Shahgedanova et al. [86]. The
characteristic property of this definition is that the point of time at which a deviation be-
tween prediction and measurement occurs is not relevant. Moreover, with the definition
in Equation (3.9) errors caused by coherent structures such as a wrongly predicted front
are summarised in one error value, i.e. the correlation between succeeding deviations is
implicitly taken into account.

The idea behind choosing rmseday can be illustrated by an example. Imagine a low
pressure system approaches the domain of interest. It brings a rise in wind speeds that is
predicted for the late afternoon, say 18 h, but actually arrives a few hours earlier, say 12 h.
In this case the difference between predicted and measured values is rather large and
negative at 12 h (because the prediction did not foresee the low) and small and negative
at 18 h (because the prediction expected the wind speed to start increasing). Moreover,
at 24 h the low has passed and the wind speed actually decreases while the prediction
still suggests high wind speeds leading to a positive deviation. Now these situations
can typically produce phase errors where the deviations at a number of lead times in a
row are coherently affected. Another important point is that in terms of the daily error
measure it should not matter whether the low is too fast as in this example or is behind
schedule, i.e. arrives later than predicted.

3.2.4 Tests of statistical significance

Resolving individual situations reduces the amount of data points available per cluster
by about a factor 10 and, thus, statistical significance becomes an important issue. There-
fore, care has to be taken not to be fooled by statistical artefacts such that in this chapter
and the next one tests for statistical relevance will again be applied. To check if the dif-
ferences in the statistical values of different clusters are not obtained by chance an F-test
together with Scheffe’s multiple comparisons are applied which are based on relating
the within-cluster variance of the error values to the variance of the error values in the
remaining clusters.
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3.3 Results

The methods described above are applied to measurement data at different sites. To de-
velop a climatological classification scheme measured data from one year is used. The
horizontal wind vector ~u at a site is calculated by sine-cosine transformation of the mea-
sured wind speed and direction at, preferably, 30 m to avoid artefacts from obstacles that
might occur for lower heights. However, if the 30 m measurement is not available 10 m
data are also used. The corresponding surface pressure is taken from the nearest syn-
optic station of the German Weather Service. It is converted to mean sea level using the
barometric height formula.

To avoid complications due to missing data points only sites with a high data avail-
ability in wind speed, wind direction and surface pressure are chosen. The investiga-
tion here will focus on two locations Fehmarn and Hilkenbrook with 30 m wind data.
Fehmarn is an island in the Baltic Sea close to the German coast. The site that is in-
vestigated is near the island’s shore line and, hence, exposed to rather inhomogeneous
conditions. Northerly and north westerly winds approach the site over the sea while
easterly to south westerly winds arrive over land. In contrast to this Hilkenbrook is in
the north western part of Germany about 70 km south of the coast of the North Sea. The
terrain is rather homogenous in terms of the surface roughness and no orographic effects
are to be expected.

The results are presented in the following way. First the modes extracted from the
meteorological variables with PCA are presented. Then cluster analysis is applied to
the reduced data matrix and the typical weather classes that are obtained by a straight-
forward approach are shown for complete as well as Ward’s linkage and compared to
large-scale weather maps. The average forecast error of the wind speed for each cluster
is provided and discussed for the different linkage techniques.

3.3.1 Extraction of climatological modes

The PCA as described in section 3.2.1 is carried out numerically using routines from the
standard software MATLAB. In Figure 3.1 the eigenvalues, λi, of the PCA for Fehmarn,
Hilkenbrook and, for comparison, another site, Rapshagen, are shown. The eigenvalues
are normalised with the total variance, i.e. the sum of all eigenvalues. It can be clearly
seen in Figure 3.1 that the eigenvalues decay rapidly with the first six eigenvalues already
explaining about 90 % of the variance.

The spectra are surprisingly similar though the stations are in regions with distinct
weather regimes and different local conditions around the site. There are only minor
deviations for the first and most important eigenvalues, i.e. the distribution of variance
among the corresponding PC is rather consistent. The eigenvalues for Syke are not shown
as they are as expected almost identical to those of the rather adjacent site Hilkenbrook.

The first six principal components (PC) in ~u-space of Fehmarn and Hilkenbrook are
shown in Figure 3.2. The temporal evolution of ~u(t) = (ut, vt) at times t = 0, 6, 12, 18 and 24 h
is indicated by connecting the end points (ut, vt) with lines. Note that the wind vector, i.e.
the direction in which the wind blows, is shown while the description of wind directions
will refer to the direction from which the wind comes. Hence, e.g. southerly winds refer

29



Methods for Estimating the Uncertainty of Wind Power Forecasts

1 3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

 index

 n
or

m
al

iz
ed

 e
ig

en
va

lu
e

Fehmarn
Hilkenbrook
Rapshagen

Figure 3.1: PCA eigenvalue spectrum normalised with the sum of the eigenvalues, i.e. the total variance,
for three sites (Fehmarn, Hilkenbrook and Rapshagen). Though the sites have different local wind charac-
teristics the spectra are similar.

to wind vectors pointing to the north.

The corresponding PC of pmsl are illustrated in Figure 3.3. Note that the PC do not
necessarily correspond to actual meteorological conditions at the location on a specific
day. They constitute the set of vectors whose linear combination can approximately re-
construct the current situation (cf. Equation (3.4)).

Typically, the first two PC are rather stationary in that they show little diurnal vari-
ation in terms of wind direction and pressure. For all investigated sites the first PC de-
scribes moderate wind speeds from east or north east with slightly higher wind speeds
at noon and virtually no change in wind direction over the day (see Figures3.2 and 3.3).
In addition, the pmsl is at a constantly high level. PC 2 is also quite consistent for differ-
ent locations. It refers to north westerly wind directions with increasing wind speeds at
midday. The corresponding pmsl is slightly rising at a high level. In terms of ~u these first
two PC can roughly be associated with the two most frequent flow directions at the site.

The third PC is again similar for all sites although it occurs with different signs. As
the sign of the PC is arbitrary, those PC which only differ in their sign are regarded as
identical climatological modes. In half of the cases PC 3 refers to wind from the north
with pmsl increasing from low to medium level while for the other half it describes wind
from the south in connection with pmsl falling from high to medium level.

Higher principal components are much more dynamic for all sites than the first three
PC. As can be seen in Figures 3.2 and 3.3 the diurnal variations in all variables are pro-
found. PC 4 to 6 typically refer to changes in wind direction of about 180 deg up to
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300 deg with rapidly changing wind speeds and pmsl. Hence, these PC are needed to
account for changing meteorological conditions over one day.

For adjacent stations the PC are almost identical. However, even for sites that are
supposed to be located in different climatological conditions like Fehmarn and Hilken-
brook the sets of relevant PC are surprisingly similar. This suggests that PCA extracts
fundamental modes of the climatology that are quite universal for the investigated area
of northern Germany.

The inspection of the eigenvalue spectra in Figure 3.1 reveals that the first four PC
on average contribute most to the meteorological signal. However, the structure of the
PC as discussed above showed that, in particular, the PC 4 to 6 describe the dynamic
changes of the weather condition occurring within 24 hours. Hence, these higher modes
are expected to represent more extreme meteorological situations which do not occur
often but are supposed to account for larger forecast errors than more stationary modes.
Consequently, the first six PC are chosen, i.e. N = 6, as the orthogonal basis {~qi}, i =

1, . . . , 6, spanning the reduced state space.
Hence, the number of modes chosen here is slightly larger compared to what the

eigenspectrum suggests. Yarnal [94] points out that the use of too many eigenmodes
does not necessarily enhance the performance of the following cluster analysis which is
quite understandable as the additional variation introduced by including more modes
might not contain useful information but mainly noise. However, in the course of this
investigation it will turn out that in particular the PC which describe changes in the me-
teorological variables over one day are important. The use of less than six PC has so far
not been investigated.

According to Equations (3.2) and (3.3) the data matrix M is projected onto the new
basis and the day-score matrix X is obtained that contains the contributions of the six PC
to the meteorological situation of a specific day.

3.3.2 Meteorological situations and their forecast error

The 365 by 6 day-score matrix X is the basic element of the cluster analysis as its rows
constitute the phase space points that are to be grouped together. The three linkage tech-
niques average, complete and Ward’s linkage have been used in this investigation to
define clusters. In contrast to Shagedanova et al. [86] and Kalkstein et al. [46] average
linkage as defined in Equation (3.7) failed in producing meaningful synoptic classes as it
sorted two thirds of the days into one common group and divided the remaining days
into a number of small groups. Complete linkage (Equation (3.6)) and Ward’s linkage
(Equation (3.8)) produce clusters that can be associated with typical weather situations
and, hence, the classification schemes based on these linkage types appear to be reason-
able. In the following the results of complete and Ward’s linkage are presented for the
two sites Fehmarn and Hilkenbrook.

Complete linkage

The first step of the cluster analysis is to successively join the objects in the phase space
starting from 365 separate days up to one single cluster and record the distances accord-
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Figure 3.2: First six principal components (PC) of ~u space for Fehmarn (top) and Hilkenbrook (bottom).
The symbols denote the points (ut, vt) at times t=0, 6, 12, 18, 24 h where (u0, v0) (t=0 h) is marked by “+”.
The first three PC are stationary with slight wind speed variations over the day. The higher PC describe
changes in the meteorological situation.
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Figure 3.3: First six PC of pmsl space for Fehmarn (top) and Hilkenbrook (bottom). The first two PC refer
to rather constant high pressure while the higher PC describe changes in pmsl which can be rather dramatic,
e.g. PC 6.
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ing to Equation (3.6) of the two clusters that have been formed in each step. The larger
the distance the greater the difference between the clusters in terms of the chosen linkage
method. Hence, the clustering process should be interrupted if the distances between the
clusters become too large which is often indicated by a “jump” in the series of distances.

Figures 3.4 and 3.5 show the distances of the final 15 clustering steps using complete
linkage at the two sites. In both cases there are several jumps in the distances that suggest
the unification of two clusters that are quite distinct. For Fehmarn two crucial points
can be identified at the transition from seven to six and from five to four clusters. At
Hilkenbrook detectable steps in the cluster distances occur at the transition from eight to
seven and also five to four clusters.
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Figure 3.4: Distance between clusters versus number of clusters using complete linkage at Fehmarn. As
clusters are successively joined “jumps” in the distances start to occur at the transitions from seven to six
and five to four clusters. This defines the range of cluster numbers considered for further analysis.

In this investigation it turns out that the classification scheme is quite robust in the
sense that useful classification results can be obtained for different cluster numbers. The
behaviour of the cluster distances suggests a range of possible cluster numbers that
should be considered for further investigations rather than providing just one optimal
number. Which number of clusters is selected depends on the detailed purpose of the
investigation. In order to interprete clusters in terms of weather classes and to compare
clusters found at different sites it is useful to choose a number of six to eight clusters
because the synoptic situations are more homogeneous. However, using more clusters
means that a smaller proportion of the 365 days per year are grouped together in a com-
mon cluster. This can lead to less significant results with regard to the average forecast
error. As a consequence, it seems advisable to vary the number of clusters in the range
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Figure 3.5: Distance between clusters versus number of clusters using complete linkage at Hilkenbrook.
Note the discontinuities at the transitions from eight to seven and five to four.

indicated by the discontinuities in the cluster distances and to carefully consider the re-
sults in terms of the corresponding weather class on the one hand and the forecast error
on the other hand. As the clustering technique has the convenient property that only
two clusters are joined at each step without affecting the remaining groups it is easy two
follow what actually happens if the number of clusters is varied.

Complete linkage at Fehmarn

Following this approach six clusters are used for Fehmarn to see how they can be con-
nected to the overall weather situation. After the clusters are defined the corresponding
meteorological situation is considered in terms of the mean values of “real” ~u and pmsl
for each cluster. Figure 3.6 shows the mean values of the meteorological variables of
Fehmarn’s six clusters. Note that ~u denotes the wind vector and points in the direction
in which the wind blows whereas wind directions, as usual in meteorology, refer to the
direction from which the wind blows. In terms of pmsl (Figure3.6 (bottom)) the clusters
show three different regimes: low pressure (clusters 1, 2 and 5), moderately high pmsl
(clusters 3 and 6) and very high pmsl (cluster 4).

The low pressure situations differ considerably with respect to wind speed and di-
rection (Figure 3.6 (top)). Typically, cluster 1 has moderate winds from south west and
slightly decreasing pressure caused by a low pressure system approaching from the west
or north west together with a high south of the site. The large-scale weather map of a
typical day of cluster 1 is shown in Figure 3.7 (top). Cluster 2 refers to a strong low that
passes north of the site as illustrated in Figure 3.7 (bottom). The pmsl drops on average
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Figure 3.6: Means of ~u (top) and pmsl (bottom) for different forecast horizons for six clusters at Fehmarn
constructed with complete linkage. For ~u the symbols denote the points (ut, vt) at times t=0, 6, 12, 18, 24 h
where (u0, v0) (t=0 h) is marked by “+”. The corresponding weather situations are shown in Figures 3.7,
3.8 and 3.9.
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to a low level around 1000 mbar and recovers again at the end of the day. The wind
speeds are very high with wind direction changing from south west to west north west
and then back to south west. Cluster 5 is related to a situation where the low passes west
of the site, e.g. over Britain and France, with high pressure gradients over the Baltic Sea
(Figure 3.8 (top)). Wind speeds are quite considerable turning from south east to north
east.

Cluster 3 is related to moderate wind speeds from easterly directions. This typically
occurs if a stable high pressure area persists over western Russia and a rather strong
low is located west of the site leading to considerable pressure gradients over Fehmarn
(Figure 3.8 (bottom)).

Days in cluster 6 are characterised by almost the same mean pressure as in cluster 3
but with north westerly wind directions. In this case central Europe is influenced by a
high or ridge located west or north west of the site (Figure 3.9 (top)).

Cluster 4 summarises mainly days from the winter period with very high pmsl around
1030 mbar and easterly winds. The corresponding weather situation is typically associ-
ated with high pressure over Scandinavia extending over Central Europe as shown in
Figure 3.9 (bottom).

Comparing the large-scale weather maps of days within one cluster shows that the
overall weather situation for most of the days is rather coherent. Hence, the classifica-
tion scheme that is based on local data at the site can be related to the overall weather
situation. This is not totally surprising as the local meteorological situation described by
wind speed, direction and pressure is caused by the atmospheric circulation on a larger
scale. Of course, for some days the weather situations are not very precisely described by
the mean values of the cluster. If more classes are used clusters typically split into new
clusters which are in itself more homogeneous than before. But with regard to the inves-
tigation in this work a small number of clusters is desired and sufficient even though the
division might be too rough for other purposes. On the whole, the synoptic classification
using six clusters with complete linkage for Fehmarn appears to be reasonable.

Complete linkage at Hilkenbrook

Hilkenbrook is about 250 km west of Fehmarn and, therefore, expected to be exposed
to different wind conditions, in particular, less influenced by continental high pressure
systems over Scandinavia and Russia but more affected by lows approaching from the
Atlantic Ocean. However, there should be a number of weather situations which are
comparable to Fehmarn as the size of the overall circulation patters is much larger than
the distance between the sites. This is confirmed by considering the means of the mete-
orological variables in the seven clusters created by complete linkage for Hilkenbrook in
Figure 3.10. Again the clusters are roughly ordered according to low pressure (clusters 5
and 6), moderate pmsl (clusters 3 and 4), and high pmsl (clusters 1, 2 and 7).

The two low pressure classes both refer to rather dynamic situations with pmsl vary-
ing over the day (Figure 3.10). Cluster 5 has high wind speeds from the south with pmsl
dropping from about 1005 mbar to 995 mbar due to a low pressure system approaching
from the north or north west. Cluster 6 is related to a strong low passing north of the site.
The wind blows rather strongly and turns from south west to west and back to south
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Figure 3.7: Large-scale Weather maps of days inside a specific cluster representing typical weather classes
derived by complete linkage at Fehmarn located at 54 deg N, 12 deg E. Top: Low pressure approaching from
North West (cluster 1). Bottom: Strong low passes north of Germany (cluster 2).
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Figure 3.8: Same as Figure 3.7 but for different weather classes. Top: Low passing west of Fehmarn over
Britain and France (cluster 5). Bottom: Stationary high pressure over western Russia (cluster 3).
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Figure 3.9: Same as Figure 3.7 but for different weather classes. Top: High pressure area north west of
Germany with low over western Russia (cluster 6). Bottom: Strong high pressure system over Scandinavia
with low influencing west of Europe (cluster 4).
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Figure 3.10: Means of ~u (top) and pmsl (bottom) at different prediction times for seven clusters found for
Hilkenbrook with complete linkage. For ~u the symbols denote the points (ut, vt) at times t=0, 6, 12, 18,
24 h where (u0, v0) (t=0 h) is marked by “+”.
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west indicating the passage of a front.
Moderate pmsl around 1010 mbar occurs at Hilkenbrook mainly in two different

weather regimes. Cluster 3 shows rather high wind speeds from the east and slightly
increasing pressure typically related to a high pressure system east or north east of the
site, e.g. over western Russia, and low pressure in the west or south west. Cluster 4
contains quite a number of days which have pmsl around 1010 mbar and very low wind
speeds. The weather class is not as clear as in all the other clusters but mainly charac-
terised by the fact that the centres of the pressure areas are far away with small pressure
gradients at the location of the site.

The three high pressure clusters at Hilkenbrook show quite pronounced differences
concerning their mean wind directions. Cluster 1 has on average the highest pmsl of
about 1023 mbar. Note that this is more than 5 mbar lower compared to the highest
pmsl at Fehmarn. The wind directions are from the east with moderate speeds. The
overall weather situation is typically dominated by a stationary high pressure system
over Scandinavia and, hence, north east of the site. In contrast to this, cluster 2 refers to
a weather situation where the high pressure area is located in the west of the site leading
to northerly wind directions. Finally, cluster 7 is related to south westerly winds caused
by high pressure south west or south of the site and at the same time low pressure in the
north.

Hence, also for Hilkenbrook the classification of meteorological situations based on
complete linkage appears to be useful.

The typical weather classes found for the two sites seem to be rather similar in terms
of the general description of the meteorological situations. In order to further test the
consistency of the classification scheme the days that simultaneously appear in clusters
from Fehmarn and Hilkenbrook are counted. The result is shown in table 3.1 where the
rows refer to Fehmarn’s clusters and the columns to those from Hilkenbrook.

Table 3.1: Comparison of equal days in clusters for Fehmarn and Hilkenbrook.

Hilkenbrook
cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7

∑

Fehmarn
cluster 1 0 0 0 29 12 6 3 50
cluster 2 0 0 0 0 0 15 2 17
cluster 3 30 16 15 51 2 0 7 121
cluster 4 35 0 0 0 0 0 0 35
cluster 5 0 0 3 16 1 1 0 21
cluster 6 4 43 0 38 0 0 36 121

∑

69 59 18 134 15 22 48 365

Some clusters share a rather profound number of days. For example, cluster 2 of
Fehmarn is, except of two days, completely contained in Hilkenbrook’s cluster 6. Hence,
on these 15 days the classification at both sites records a weather situation dominated
by a strong low pressure system that is centred north of Germany and moves quickly
to the north east. However, the exact path and the advection time of the low decides

42



ANEMOS Deliverable Report D3.1bis

whether both sites are affected simultaneously or only one of them. If the low takes a
more southern route only Hilkenbrook classifies this situation as cluster 6 while Fehmarn
has a smaller pressure drop and lower wind speeds as it is located further in the east and,
hence, might not to affected by the fronts. Fehmarn labels this situation as cluster 1.

Another example is cluster 4 of Fehmarn which is totally absorbed by cluster 1 of
Hilkenbrook. These 35 days are typically related to a high pressure system over Scandi-
navia or Western Russia with extremely high pmsl over north eastern Germany. How-
ever, Hilkenbrook’s cluster 1 contains more days than that which overlap with cluster 3
of Fehmarn. At these days the high pressure system is located further in the east leading
to similar wind directions from the east and pmsl around 1020 mbar at both sites.

On the other hand, certain weather situations lead to different classification results
at both stations, e.g. cluster 3 of Fehmarn is distributed over six different clusters of
Hilkenbrook. This occurs if the two sites are influenced by distinct weather regimes.
In this case Fehmarn is dominated by rather high pressure located over western Russia
while at the same time Hilkenbrook can experience a variety of high or lower pressure
situations.

The result of this comparison is that the consistency between the classifications at the
two sites seems to be rather high. For the majority of cases common days in clusters
can be plausibly explained by the overall weather situation that either shows that the
two sites are affected in the same way or why they simultaneously record different local
conditions.

Relation to forecast error using complete linkage

For each of the clusters the mean forecast error is determined by averaging the rmse val-
ues calculated for each day with Equation (3.9). The wind speed prediction at 10 m is
provided by the “Deutschlandmodell” of the German Weather Service while the corre-
sponding wind speed measurements are from the WMEP measurement programme.

The means of the daily rmse values per cluster normalised to the annual average of
the wind speed are shown in Figure 3.11 for Fehmarn and Figure 3.12 for Hilkenbrook
found with complete linkage. In both cases there are considerable differences between
the forecast errors of the different clusters. The error bars illustrate the 95% confidence
intervals of the mean values suggesting that the clusters with minimum and maximum
rmse are indeed significantly separated.

In particular, Fehmarn’s clusters 1, 2 and 5 are related to large relative rmse values
around 0.38 corresponding to about 2.1 m/s absolute rmse. As described before (Fig-
ure 3.6) these three clusters are related to different low pressure situations. Cluster 2
corresponds to situations where a strong low passes north of the site and has on average
the highest forecast error. In contrast to this cluster 4 representing the weather type with
the largest pressure has the smallest rmse of about 0.23 relative and 1.3 m/s absolute. A
statistical F-test (with confidence level 0.05) confirms that this is significantly lower com-
pared to the above mentioned classes 1, 2 and 5. The ratio between the largest and the
smallest rmse is 1.7 which is very profound.

At Hilkenbrook cluster 6 has the highest rmse with 1.8 m/s absolute and 0.51 relative.
The corresponding weather situation is related to a low pressure system passing north of
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Figure 3.11: Means of daily rmse of wind speed prediction normalised with annual mean of wind speed
for the six clusters found with complete linkage at the site Fehmarn. The error bars illustrate the 95%
confidence intervals of the mean. Clusters 1, 2 and 5 show the largest error. In both cases the corresponding
weather situation is dominated by a low pressure system. All three clusters have significantly larger forecast
errors than cluster 4 which typically refers to a stationary high pressure situation and has a significantly
lower rmse compared to clusters 1, 2 and 5.

the site. The cluster with the smallest average forecast error is cluster 1 related to a rather
stationary high pressure situation where the rmse is 1.0 m/s absolute and 0.29 relative
to the mean wind speed. The ratio between the maximum and minimum rmse is 1.8. It
is also interesting to note that the forecast error in cluster 4 is on a medium level of 0.39
relative rmse (1.4 m/s) which is roughly half way in between the smallest and largest
error values and significantly different from both of them. The days in this cluster are
related to medium pmsl with small pressure gradients and, hence, low wind speeds.

Again the average forecast errors found for the typical weather situations at the two
sites show a good consistency. For Fehmarn as well as for Hilkenbrook large rmse values
occur for the clusters that are related to a rather fast moving low pressure system that
passes north of the site (cluster 2 for Fehmarn, 6 for Hilkenbrook). The local meteoro-
logical conditions are characterised by pmsl on a relatively low level further decreasing
around midday but recovering at the end of the day. Wind speeds are fairly high with
wind directions turning from south west to west and back to south west indicating the
passage of a front. Depending on the path of the low this situation simultaneously occurs
at both sites or only at Hilkenbrook (see table 3.1).

In addition, for Fehmarn the passage of low pressure areas in the west or south west
of the site with strong easterly winds (cluster 5) is also related to large forecast errors.
At Hilkenbrook these days are recorded in cluster 4 which additionally contains more
situations with on average smaller wind speeds and slightly higher pmsl compared to
Fehmarn. The corresponding forecast error is the second largest at Hilkenbrook but sig-
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Figure 3.12: Same as Figure 3.11 but for the seven clusters found with complete linkage at Hilkenbrook.
Cluster 6 has the maximum forecast error which is significantly different from clusters 1, 2, 4 and 7.
Cluster 6 is related to a low pressure system passing north of the site. Cluster 1 with the smallest rmse
corresponds to a situation where a stationary high pressure dominates the local weather conditions. Its
error is significantly lower compared to clusters 4 and 6.

nificantly lower than the largest one. Thus, at Fehmarn there are higher wind speeds
caused by larger pressure gradients while at the same time at Hilkenbrook more moder-
ate conditions prevail.

In contrast to this, both sites have the smallest forecast error in situations where a
high pressure area lies rather stationary over Scandinavia or the Baltic Sea with relatively
high wind speeds from the east. For Fehmarn the mean rmse in this case is 17% to 39%
smaller than those of the other weather classes. For Hilkenbrook the minimum rmse is
13% to 42% smaller than in the other clusters.

Hence, using complete linkage leads to a reasonable synoptic classification of the me-
teorological data (30 m wind data and pmsl of nearby synop station) at these two sites in
the sense that the clusters can be associated with typical large-scale weather classes. The
number of classes found by considering the interval of clustering steps given by “jumps”
in the distances between the clusters as criterion to stop the clustering process already
provides a good choice. Moreover, the mean forecast errors related to the clusters show
significant differences where the maximum and minimum rmse are as expected related
to dynamic low pressure and stationary high pressure, respectively.

Ward’s linkage

For most of the investigated sites Ward’s linkage produced clusters which are in prin-
ciple comparable to those found by complete linkage. But the alterations between the
groups of days generated by the two methods can make important differences in terms
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of the grouping of days and, thus, the related forecast errors. This is now illustrated for
Fehmarn where typical differences between the methods occur.

As Figure 3.13 shows the distances between the clusters at the final 15 steps of the
clustering procedure behave rather similar to complete linkage. There are discontinuities
at the transitions from eight to seven and five to four clusters. Again choosing a number
of clusters from this interval leads to a classification that allows to relate the clusters
to large-scale weather situations and to find significant differences between the average
forecast errors per cluster.
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Figure 3.13: Distance between clusters versus number of clusters using Ward’s linkage at Fehmarn.
“Jumps” in the distances occur at the transitions from eight to seven and five to four clusters. This is
similar to complete linkage (Figure3.4).

The results of the classification based on six clusters with Ward’s linkage for Fehmarn
are shown in Figures 3.14. With regard to these mean values of ~u and pmsl the classes are
generally comparable to those found by complete linkage in Figures 3.6. But it is obvious
by comparing the means of the pressure that there are differences in particular for the
low to medium range with pmsl between 1005 mbar and 1015 mbar. Moreover, in terms
of the mean wind vectors Ward’s cluster 1 appears to constitute a new class which does
not appear under complete linkage.

A more detailed comparison of the overlaps between the clusters reveals that some
days are grouped rather differently by the two methods. Table 3.2 shows that the only
two clusters that are nearly identical are number 2 of complete and 5 of Ward’s which
share 16 common days related to the well-known weather situation of the passing low
in the north. Hence, these seldom but rather extreme days are consistently classified by
both methods.

Another interesting weather class is the high over Scandinavia or the Baltic Sea de-
tected by complete linkage as cluster 4. Under Ward’s linkage these 33 days with very
high pressure are almost totally contained in cluster 2. But this cluster contains addi-
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tional days from situations with slightly lower pmsl and lower wind speeds. Hence,
Ward’s cluster 2 joins days into one class that are separately classified under complete
linkage, i.e. clusters 3 (pmsl around 1020 mbar) and 4 (very high pmsl ≈ 1030 mbar).
This tendency of Ward’s linkage to group extreme together with less extreme situations
though they should remain distinct has already been described in earlier investigations,
e.g. by Kalkstein et al. [46]. Another typical feature of Ward’s method is to create rather
equally sized groups which can also be observed in table 3.2. The distribution of days on
the clusters is more balanced compared to complete linkage.

Table 3.2: Comparison of equal days in clusters complete and Ward’s linkage for Fehmarn. Though the
means of the clusters are rather similar to complete linkage there are differences in the actual grouping.

Ward
cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6

∑

Complete
cluster 1 0 0 30 0 4 16 50
cluster 2 0 0 1 0 16 0 17
cluster 3 10 24 32 0 0 55 121
cluster 4 0 33 0 2 0 0 35
cluster 5 0 0 0 0 1 20 21
cluster 6 22 0 41 55 3 0 121

∑

32 57 104 57 24 91 365

Relation to forecast error using Ward’s linkage

The mean daily forecast error per cluster for Ward’s linkage is shown in Figure 3.15. Com-
pared to the rmse of the complete linkage clusters in Figure 3.11 the differences between
the classes are less pronounced. The statistical F-test reveals that cluster 2 with the lowest
rmse is significantly different from clusters 3 and 6 with the highest rmse. But in contrast
to this, complete linkage results in a higher number of significantly different clusters, in
particular the cluster with the smallest prediction error has a significantly lower rmse
than three of the other clusters. Thus, at this site Ward’s clusters have rather equalised
error levels with smaller differences between the clusters. This is considered as a disad-
vantage compared to complete linkage as the classification scheme that provides a better
distinction between the forecast errors is more useful. Of course, under the condition that
it produces rather homogeneous clusters which can be associated with certain weather
types.

For the sites in this investigation the clusters constructed by Ward’s linkage provided
a classification scheme that appears to correspond to typical weather situations. But com-
pared to complete linkage the grouping of days can be different with a slight trend to
join distinct meteorological situations into common classes and to form equally sized
groups. However, in contrast to the findings by Kalkstein et al. [46] Ward’s linkage does
not appear “to blur distinctions between types”. In terms of the related prediction error
complete linkage performs better than Ward’s linkage at Fehmarn and Hilkenbrook as it
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Figure 3.14: Means of ~u (top) and pmsl (bottom) at different forecast horizons for six clusters found by
Ward’s linkage at Fehmarn. For ~u the symbols denote the points (ut, vt) at times t=0, 6, 12, 18, 24 h where
(u0, v0) (t=0 h) is marked by “+”. Some of the clusters are comparable with those provided by complete
linkage (Figure 3.6), in particular cluster 5 with cluster 2 by complete linkage.
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Figure 3.15: Means of daily rmse for the six clusters found with Ward’s linkage at Fehmarn. The differences
between the forecast errors are not as pronounced as for complete linkage (Figure 3.11).

provides sharper distinctions between the clusters.

Results for other sites

The site Syke is about 50 km west of Hilkenbrook still in the north western part of Ger-
many. The results based on complete linkage using of measurements of wind data at 10 m
height instead of 30 m as before are rather similar to Hilkenbrook. Here the passage of
the low centred in the north is also related to the maximum forecast error. The minimum
rmse also occurs for a high pressure situation but in contrast to the two sites above the
high is west of the site. The Scandinavian high that leads to the minimum forecast errors
for the sites above still has a relatively small rmse. At Syke the performance of Ward’s
technique is comparable to the complete method. The behaviour of the forecast error for
the different weather classes, particularly, the systematically larger rmse for dynamic low
pressure situations is also confirmed under Ward’s linkage.

At Rapshagen complete linkage (also 10 m wind data) provides clusters whose inter-
pretation in terms of large-scale weather classes is not as clear as for the other sites. At
this site Ward’s linkage seems to be superior and leads to a classification that is easier
to relate to weather patterns. The forecast errors per cluster again show that the well-
known low pressure passage has a rather high rmse but certain high pressure conditions
also have. However, this site should be treated with care as local effects seem to strongly
influence the flow conditions locally though the orography is only slightly complex. In
terms of the relation between meteorological conditions and the forecast error this leads
to an overlap between the overall predictability of the weather situation by the NWP and
local effects on the wind field due to the specific on-site conditions.

Regarding local effects, e.g. due to orography causing speed up effects over hills and
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channeling effects in valleys, it has to be points out that the classification method works
with on-site information and is, therefore, unable to tell local flow distortion from global
circulation. Hence, local effects are implicitly taken into account and there might be an
overlap between the two effects. Among the investigated sites only one site (Rapshagen)
obviously shows this phenomenom and makes it difficult to draw definite conclusions
while the other sites do not show strong signs of local effects in the course of the analysis.

As a summary the results for all investigated sites are given in table 3.3 where the
relative rmse for the three weather classes “low passes in the north”, “Scandinavian high”
and “high centred in north west” having the most distinct differences in terms of the
forecast error are shown. The rather dynamic passage of the low leads to large prediction
errors at all sites with the relative rmse ranging from 0.31 to 0.51. Compared to this
the two high pressure situations are related to significantly smaller forecast errors. The
high over Scandinavia causes an average rmse from 0.23 to 0.29 with the exception of
the unusual error value of 0.43 at Rapshagen presumably related to orographic effects. A
high pressure area centred north west or west of the sites has also rather small relative
rmse between 0.22 and 0.36. To express the difference between the weather classes in
terms of the forecast error the ratio between the maximum rmse of the low pressure
situation and minimum rmse of the high pressure is used. It ranges from 1.5 to 1.7 where
again Rapshagen is not considered. Hence, the differences are rather profound and the
weather type appears to be an important criterion to distinguish different error regimes.

Table 3.3: Overview of the relation between the average forecast error and the meteorological situation for
the investigated sites using complete linkage for Fehmarn, Hilkenbrook and Syke and Ward’s linkage for
Rapshagen. The number of clusters is determined by inspection of cluster distances. The relative rmse of
those weather classes are shown that typically have high (“low passes in the north”) or low (“Scandinavian
high”, “high pressure north west”) forecast errors. At Rapshagen the flow situation corresponding to high
pressure with easterly winds seems to be influenced by local effects and produces a very unusual large
forecast error marked by ∗.

number of relative rmse relative rmse relative rmse rmse ratio
clusters “Low passes ” “Scandinavian “High centred in max./min.

north of site” high” north west”
Fehmarn 6 0.39 0.23 0.29 1.7
Hilkenbrook 7 0.51 0.29 0.36 1.8
Rapshagen 7 0.31 0.43∗ 0.22 2.0∗

Syke 7 0.36 0.29 0.24 1.5

3.4 Conclusion

In this chapter the quantitative relation between the actual weather situation and the
error of the corresponding wind speed prediction has been investigated with methods
from synoptic climatology using local measurements of meteorological variables. The
main result is that in this framework significant differences in the forecast error for dis-
tinct weather situations can be observed. In particular, the expectation can be confirmed
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that dynamic low pressure situations with fronts are related to considerably larger pre-
diction errors than weather types that are mainly influenced by rather stationary high
pressure systems. The ratio between the maximum and the minimum error in terms of
the average rmse for these situations is between 1.5 and 1.7 which is quite profound.

A classification scheme based on principal component analysis and cluster analysis
is successfully applied to automatically divide meteorological situations into different
classes. Although the classification procedure uses local information of wind speed, wind
direction and atmospheric pressure the derived classes can be associated with the overall
weather situation in most cases by comparing typical days from the clusters with large-
scale weather maps. It is important to include information about changing weather con-
ditions by using several measurements of the variables a day. The classification results
for the different sites that have been investigated are very consistent.

However, care has to be taken if local effects at the site have a strong influence on the
flow, e.g. due to orography causing speed up effects over hills and channeling effects in
valleys. As the classification method works with on-site information it is unable to tell
local flow distortion from global circulation. Hence, local effects are implicitly taken into
account and the results may reflect an overlap between the two effects. In this investi-
gation the classification procedure seems to be robust enough to deal with the degree of
local inhomogeneity that occurs for sites in northern Germany including an island site.
To exclude local effects it is advisable to prefer wind data measured at 30 m height or
higher to 10 m data. For further use of this type of classification scheme it is necessary to
systematically evaluate the performance for sites in more complex terrain.

Moreover, it is important to note that this investigation only confirms that there is
a relation between the prevailing weather situation and the forecast error of the wind
speed for historical data of one year. So far, only the 00 UTC prediction run with the lead
times 6, 12, 18 and 24 h has been used to assess the daily forecast error because of the
limited availability of high quality data in all variables at all times. Hence, it is desirable
for future investigations to shed some light on the behaviour of the prediction horizons
beyond 24 hours and to confirm the results found here with data from longer periods of
time.

With regard to practical applications the advantage of this method is clearly that it
works on a rather small set of standard meteorological variables such that on-line mea-
surements can be obtained quite easily and cost effectively. This is, together with the fact
that the classification scheme is automatic rather than manual, a major pre-requisite for a
possible operational use of the classification scheme.

So far measurements of the meteorological variables have been used to determine the
weather class. In order to exploit these findings for an estimation of the uncertainty of
a wind power prediction basically two steps are necessary. First of all the predictability
of the weather classes themselves has to be evaluated. For prediction purposes it is re-
quired to determine the weather type in advance in terms of the predicted wind speed,
wind direction and atmospheric pressure. As the forecast quality of pressure and wind
direction (e.g. shown by Mönnich [67]) is considerably better than that of wind speed
the prospects are quite good to accurately predict the meteorological class. This step is
nontrivial because the uncertainty of the wind speed prediction which should be pro-
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vided dependent on the weather class is also involved in predicting this weather class.
Hence, it must be shown that there is still some advantage in doing so. In a second step
the uncertainty of the wind speed forecast has to be transferred to the power forecast.
The simplest approach in this direction is to consider the error propagation as applied in
section 2.5 where it was shown that the power uncertainty can rather well be estimated
by the product of wind speed uncertainty and the derivative of the power curve. The in-
novative step in terms of the results of this chapter would then be to replace the constant
wind speed uncertainties by weather type dependent ones.
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Chapter 4

Using quantile regression to extend

an existing wind power forecasting

system with probabilistic forecasts

Abstract

For operational planning it is important to provide information about the situation dependent
uncertainty of a wind power forecast. Factors which influence the uncertainty of a wind power
forecast include the predictability of the actual meteorological situation, the level of the predicted
wind speed (due to the non-linearity of the power curve), and the forecast horizon. With respect
to the predictability of the actual meteorological situation we consider a number of explanatory
variables, some inspired by the literature. The chapter contains an overview of related work
within the field. We consider an existing wind power forecasting system (Zephyr/WPPT) and
show how analysis of the forecast error can be used to build a model of the quantiles of the forecast
error. Only explanatory variables, or indexes, which are predictable are considered, whereby
the model obtained can be used for providing situation dependent information regarding the
uncertainty. Finally, the chapter contains directions enabling the reader to replicate the methods
and thereby extend other forecast systems with situation-dependent information on uncertainty.

4.1 Introduction

In recent years a growing interest in information about the uncertainty of wind power
forecasts in different weather situations has emerged. Based on wind speed measure-
ments and standard meteorological forecasts [9] estimates the power curve of a small
wind farm and then models the relation between the actual and forecasted wind speed
both with respect to the mean and the covariance. Considering the same wind farm [10]
use local linear quantile regression to obtain a probabilistic model based on meteorolog-
ical forecasts and on observations of power. [80, 79] use consecutive forecasts and based
on these a quantity called “Meteo-Risk Index” is defined. This quantity measures the
agreement between the consecutive forecasts and is used to predict the uncertainty of the
wind power forecast. [59] identify relations between typical weather situations and the
magnitude of the forecast error. In a research project carried out together with Eltra (the
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TSO in western Denmark) [71] developed a stochastic model of the forecast errors when
using WPPT, Version 2 [76]. The model describes the variance and the correlation, within
and between the daily forecasts.

Over the last decade much effort has been spent on developing wind power fore-
casting systems supplying a point forecast of the wind power production of a farm or a
region. For this reason it is desirable to be able to extend existing point forecast systems
to probabilistic forecast systems. In this chapter we consider forecast errors from an ex-
isting system (WPPT, Version 4, [75, 72]) and use linear quantile regression [49] together
with spline bases [21] in order to obtain a model for the 25% and the 75% quantiles of the
forecast errors. The methods are easily applicable and can be applied to any forecasting
system using the free software called “R” (homepage http://www.r-project.org) with the
add-on package “quantreg”, which can be downloaded from the same homepage. The
meteorological forecasts used by WPPT in the particular setup considered is the wind
speed and direction 10 meter above ground level (10m a.g.l.) from DMI-HIRLAM [84]
and we consider a few other forecasted variables from DMI-HIRLAM as candidates for
the quantile model. Furthermore, for each of these variables, we consider risk-indices
inspired by the Meteo-Risk Index mentioned above. It was decided to focus on the hori-
zons relevant for reporting to NordPool (http://www.nordpool.com). Considering tim-
ing and calculation times we have therefore focused on the 06Z DMI-HIRLAM forecast
for horizons 18–42 hours. However, in order to be able to calculate the risk indices for
each of the meteorological variables we consider only 18–36 hours, see the beginning of
Section 4.4.2.

The outline of the chapter is as follows. The data, including training and test periods,
is described in Section 4.2. The methods used in the chapter, i.e. quantile regression and
parametric additive models, are briefly described in Section 4.3. Also, in Section 4.3, it
is described why we have chosen to use additive models. Sections 4.4 and 4.5 describe
the model building process and the evaluation on test data, respectively. Finally, in Sec-
tion 4.6 we conclude on the chapter. In Section A it is outlined how the models can be
fitted, visualized, and how forecasts can be produced using “R”.

4.2 Data

The data used in this study consists of:

• 15 min. power averages from the Tunø Knob offshore wind farm consisting of 10
Vestas V39 turbines (500kW nominal). Location: 55◦ 58’ 08” N, 10◦ 21’ 10” E.

• Forecasts of the wind power production of the farm based on WPPT, Version 4.
Time step 15 min., with a maximum horizon of 48 hours.

• Meteorological forecasts of air density, friction velocity, 10m wind speed and direc-
tion from DMI-HIRLAM [84]. Time step 60 min., with a maximum horizon of 48
hours.

• The period considered is January 1 – October 31, 2003. Data until June 1 is used for
developing the quantile models. Data is available back to July 1, 1999. Data from
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before January 1, 2003 is only used to indicate the overall spread of historic power
productions.

Interpolation is used to obtain meteorological forecasts for all time points at which power
forecasts and observations are available. It is noted that on Sept. 2, 2003 a model change
was introduced into DMI-HIRLAM which is expected to have large influence on the fore-
casted 10m wind. Over time, WPPT will adapt to this change and will use the meteoro-
logical forecasts in an optimal way within the framework of the system. However, the
distributional properties of the error may change permanently.

Figure 4.1 shows the observed power plotted against the forecasted power for the
training and test data and for the data split at Sept. 2, 2003. The plots of the training and
test data differ qualitatively. Especially, the saturation at high levels of the production
occurs much more frequently in the training data than in the test data. The other plots
on the Figure indicate that this could be related to the change in DMI-HIRLAM on Sept.
2, 2003. For this reason the evaluation on the test data will be performed on the total test
set and on the test set split on the date just mentioned.

4.3 Methods

4.3.1 Quantile regression

Considering a random variable Y , the median is the most well known quantile and is
characterized as the value Q(1/2) for which the probability of obtaining values of Y

above or below Q(1/2) both equals 1/2. Generally, Q(τ) is defined as the value for which
the probability of obtaining values of Y below Q(τ) is τ . In quantile regression [49, 50]
Q(τ), 0 < τ < 1, is expressed as a linear combination of some known regressors and un-
known coefficients, exactly as the mean is modelled in (multiple) linear regression. Thus,
the τ -quantile is modelled as

Q(τ) = β0(τ) + β1(τ)x1 + . . . + βp(τ)xp , (4.1)

where x· are the p known regressors also called explanatory variables and β·(τ) are un-
known coefficients, depending on τ , to be determined from observations (yi, xi,1, . . . , xi,p);
i = 1, . . . , N .

Given the check function

ρτ (e) =

{

τe , e ≥ 0

(τ − 1)e , e < 0
(4.2)

the sample τ -quantile can be found by minimizing
∑N

i=1 ρτ (yi − q) with respect to q [51,
p. 417]. Figure 4.2 shows the check function for two values of τ . Replacing q with the
right hand side of (4.1) leads to the estimates

β̂(τ) = argmin
β

N
∑

i=1

ρτ (yi − (β0 + β1xi,1 + . . . + βpxi,p)) (4.3)
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Figure 4.1: Observed versus forecasted power (horizons 18-36 hours since 06Z) for the training and test
data (top row), and before and after a model change in DMI-HIRLAM which is expected to have large
influence on the forecasted 10 m wind (bottom row). Note that the length of the training and test periods
are both five months. Also, the two plots in the bottom row contain the same number of points; to achieve
this a random subset of the points before the model change is selected.

where β(τ) is a vector containing the unknown coefficients. The estimates can be ob-
tained by used of linear programming techniques [50]. Here we have used the add-on
package “quantreg” for “R”, see Section 4.1 and A. It is noted that if the check function is
replaced with squared loss, i.e. if ρτ (e) = e2, then (4.3) leads to least squares estimates.

4.3.2 Parametric additive quantile models

To simplify the discussion we start by considering models for the mean of a random
variable and later we consider models for the quantiles. Generally, when the dependence
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Figure 4.2: The check function ρτ (e), for τ = 0.25 (left) and for τ = 0.75 (right).

of y on x1, . . . , xp is not known a very general model is

y = g(x1, . . . , xp) + ǫ , (4.4)

where g is an unknown function, and ǫ represents iid. errors with mean zero and variance
σ2. In principle it is possible to estimate g, e.g. by use of local regression [20]. However,
when investigating many explanatory variables, i.e. more than two or three, the curse of

dimensionality makes practical application of (4.4) problematic, see [6] and [40, p. 83-4].
To circumvent this problem additive models [40] are used in this chapter. Models of this
type can be expressed as

y = α + f1(x1) + f2(x2) + . . . + fp(xp) + ǫ . (4.5)

The constant α and the functions f·(·) can be estimated based on data using non-parametric
methods together with backfitting, for details see [40]. However, note that unless the level
of functions are restricted the estimates are non-unique, e.g. a constant can be added to
one function and subtracted from an other. [40] impose the restriction that each of the
function estimates has zero mean over the data.

As described by [40, Sec. 9.3] each of the functions can be approximated by linear
combinations of known basis functions of the corresponding explanatory variable, i.e.

fj(xj) =

nk
∑

k=1

bjk(xj)θjk , (4.6)

where bj·(xj) are the basis functions and θj· are unknown coefficients. However, the price
paid for the simplicity is that the resulting estimates of the functions generally have larger
bias than those based on backfitting and non-parametric methods [40, Sec. 9.3].

It is simple to impose a linear restriction on (4.6), e.g. fj(0) = 0, and derive the re-
sulting nk − 1 basis functions. Likewise, if some of the functions in (4.5) are known to
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be periodic this restriction can be imposed on the basis functions. Using e.g. cubic B-
spline basis functions [21], the functions in (4.5) have continuous derivatives up to order
two. This property should also be imposed when constructing the periodic basis. Plug-
ging (4.6) into (4.5) results in a linear regression model for which the coefficients α and
θik can be found by use of least squares.

Comparing with (4.1) it is seen that this can be generalized to quantile regression by
modelling Q(τ) as

Q(τ) = α(τ) +

p
∑

j=1

fj(xj ; τ)

= α(τ) +

p
∑

j=1

nk
∑

k=1

bjk(xj)θjk(τ) , (4.7)

with the basis functions constructed under appropriate restrictions on fj(·); j = 1, . . . , p,
as outlined above.

In this chapter focus will be on the 25% and 75% quantiles. Since the level of the
functions are arbitrary the effect of xj should be quantified by plotting the sum of the
corresponding estimated function and the estimated intercept. To center the plots around
zero we subtract the average of the intercepts estimated for the 25% and 75% quantiles.
Thus, the effect of xj is quantified by plotting

f̂j(xj ; τ) + α̂(τ) −
α̂(0.25) + α̂(0.75)

2

for τ = 0.25, 0.75. Otherwise, differences in α̂(0.25) and α̂(0.75), may cause apparent
crossings of the 25% and 75% quantiles. The “hat” denotes estimated values.

4.4 Building the quantile model

In this section models for the 25% and 75% quantiles are developed. First a model con-
sidering the explanatory variables

pow.fc; forecasted power from WPPT in kW ,

horizon; number of hours since 06Z,

ad; forecasted air density from DMI-HIRLAM in g/m3,

fv; forecasted friction velocity from DMI-HIRLAM in m/s,

wd10m; forecasted wind direction 10m a.g.l. from DMI-HIRLAM in degrees, and

ws10m; forecasted wind speed 10m a.g.l. from DMI-HIRLAM in m/s

is developed. Hereafter, risk indices based on the meteorological forecast variables are
considered.
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4.4.1 Basic model

Due to the non-linearity of the power curve it is natural to require that the forecasted
power production (pow.fc) is included in the quantile model of the forecast error. Fig-
ure 4.3 shows all pairwise scatter plots of the potential explanatory variables. Due to
close relations between some of the variables (pow.fc, fv, and ws10m) it is seen that with
the requirement just stated the friction velocity (fv) and the 10m wind speed (ws10m)
can not be included in the model.
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Figure 4.3: All pairwise scatterplots of the explanatory variables (training data).

For each of the remaining explanatory variables (pow.fc, horizon, ad, wd10m) a
spline basis with 10 degrees of freedom is constructed [21]. For the wind direction
(wd10m) a periodic cubic spline basis with equidistant knots is used. The periodic basis
is constructed so that it integrates to zero over the period (360 degrees). For the non-
periodic variables natural spline bases without intercepts are used; this implies that the
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functions are restricted to be zero at the lower boundary knot. The boundary knots are
placed at the limits of the data and the internal knots are placed according to the quantiles
of the individual explanatory variables. In this way the model allow for more flexibility
where the observations are relatively dense. Note that for prediction it is important to use
the same actual knots. Since none of the bases allow for a free intercept this is handled by
an intercept in the model. The intercept is expected to vary with the quantile considered.

The resulting model for each of the quantiles (25% and 75%) is depicted in Figure 4.4
which shows the effect of each variable. For each pair of estimates the difference in es-
timated intercepts is visible for the minimal value of the explanatory variable. It is seen
that the effect of horizon is small (almost flat curves) and there is some increased uncer-
tainty for westerly winds. The dependence on air density seems to be minor. Overall
the most important explanatory variable is the forecasted power. For the training data
crossings of the 25% and 75% quantiles occur in 111 out of 10658 cases.

The estimates describing the dependence on the air density does not seem to have any
reasonable interpretation and the differences for low and high densities are supported by
very few data points. For this reason it is decided to exclude it from the model. The
number of crossings decreases to 46 for the resulting model. The estimates are depicted
in Figure 4.5. Since the curves are close when pow.fc is zero, it is seen that the intercepts
of the 25% and 75% quantile models are very close.
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Figure 4.4: Estimated 25% (blue) and 75% (red) quantiles, together with histograms of the explanatory
variables. The rugs on the 1st axis in the top row of plots indicate the placement of knots.

4.4.2 Risk indices of Meteorological variables

The European Centre for Medium-Range Weather Forecasts (ECMWF), which run the
global model supplying boundary conditions for DMI-HIRLAM, perform data assimi-
lation based on 12 hour intervals (00Z and 12Z). For the assessment of the forecast risk
the two DMI-HIRLAM forecasts which are based on the two latest global data assimi-
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Figure 4.5: Estimated 25% (blue) and 75% (red) quantiles when excluding the forecasted air density from
the model. The rugs on the 1st axis in the top row of plots indicate the placement of knots.

lations are compared. Since the primary interest is in the 06Z forecast, cf. Section 4.1,
this is compared to the preceding 18Z forecast. Since the maximum forecast horizon of
DMI-HIRLAM is 48 hours risk indices can only be calculated for the 06Z forecast up to a
horizon of 36 hours.

Following [80, 79] the difference in the two forecasts are squared and summed over
the entire range of horizons for a particular 06Z forecast. The square root of this num-
ber is used as the risk index of each variable, corresponding to each 06Z meteorological
forecast. Figure 4.6 shows histograms of the risk indices. It is seen that the risk indices
generally only show a few high values; for this reason it is decided only to investigate
linear relationships between the quantiles and the risk indices.

When adding the risk indices one at a time to the model shown in Figure 4.5, i.e.
without air density, the results shown in Figure 4.7 are obtained. Generally, the risk
indices seems to be of minor importance for the quantiles, and it is chosen to use only
the one with the clearest signal, i.e. fv. Figure 4.8 shows the estimates obtained for this
model. It is seen that the effect of the risk index is comparable to the effect of the horizon.
For the training data the number of crossings of the 25% and 75% quantiles decreases to
39 for this model.

4.5 Evaluation on test data

The following models are fitted to training data and evaluated on the test data.

Basic: A model using only the forecasted power production as explanatory variables.

Full: The model corresponding to Figure 4.4.

W/o density: The model corresponding to Figure 4.5.

Incl. risk: The model corresponding to Figure 4.8.

The number of crossings on the test data range from 60 to 82 of 11168 cases. In case of
crossing of the two quantiles these have been set to their common average. The actual
frequencies by which the prediction error is below the 25% quantile or above the 75%
quantile in the test data is listed in Table 4.1. A marked difference is seen when splitting
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Figure 4.6: Histograms of risk indices (training data).

the data according to the date at which an presumably important change was introduced
into DMI-HIRLAM. For this reason we focus on the part of the test period up to 2/9-2003.

The model termed “full” seems to result in some problems for the forecasted 75%
quantile since this forecast is exceeded in only 10% of the cases. For the model termed
“basic” the forecast intervals seems to be symmetric, but too wide. The two remaining
models both perform well (52 to 53% change to be between the forecasted quantiles),
but the forecast intervals seems to be shifted upwards corresponding to approximately
5%. Random variation may account for some of these differences, but such variations are
difficult to quantify due to the inherent and presumably complicated correlation of the
data.

Given ensemble quantiles which are correct in a probabilistic sense the quality of these
depend on (i) the ability to distinguish between situations with low and high uncertainty
and on (ii) the sharpness of the distributions. Here the sharpness is measured as the inter
quartile range (IQR), i.e. the difference between the forecasted 75% and 25% quantiles.

Qualitatively (i) is fulfilled if both low and high values of the IQR occur and with
respect to (ii) the IQR should be smaller than the IQR obtained from historic production
data. These aspects are addressed in Figure 4.9. Results are shown for three models where
the basic model is included for reference, although it is not very precise with respect to the
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Figure 4.7: Estimates of the dependence on risk indices when requiring the dependence to be linear and
adding the risk indices one at a time to the model depicted in Figure 4.5.

observed frequencies. It is seen that the basic model differs from the two other models.
Also, since the plot for the two other models does not differ markedly, it does not seem
very important to include the particular risk index.

The relatively large difference between the 5% and 95% quantiles of the IQR indi-
cates high variability and for probabilistic correct quantiles this can be interpreted as the
fulfillment of (i). Furthermore, it is seen that in many situations the ensemble IQR is
significantly smaller than the IQR of the historic power productions, i.e. the ensemble
forecast is sharp compared to historic data.

4.6 Conclusion and Discussion

We have proposed a method for building models of e.g. the 25% and 75% quantiles of
the of forecast errors from existing wind power forecast systems. Such models can be
used together with existing systems and has the potential of providing situation-specific
information about the uncertainty of a particular forecast.

The quantiles are modelled as a sum of non-linear smooth functions of variables fore-
casted by the meteorological model or variables derived from such forecasts. The addi-

63



Methods for Estimating the Uncertainty of Wind Power Forecasts

0 1000 3000 5000

−
20

00
0

10
00

20
00

pow.fc

25
%

 (
bl

ue
) 

an
d 

75
%

 (
re

d)
 q

ua
nt

ile
s

20 25 30 35

−
20

00
0

10
00

20
00

horizon

25
%

 (
bl

ue
) 

an
d 

75
%

 (
re

d)
 q

ua
nt

ile
s

0 50 150 250 350

−
20

00
0

10
00

20
00

wd10m

25
%

 (
bl

ue
) 

an
d 

75
%

 (
re

d)
 q

ua
nt

ile
s

5 10 15

−
20

00
0

10
00

20
00

r.fv

25
%

 (
bl

ue
) 

an
d 

75
%

 (
re

d)
 q

ua
nt

ile
s

Figure 4.8: Estimates in the model consisting of the model depicted in Figure 4.5 with the risk index of fv
added (bottom, right).

tive model structure is used since it allows for the inclusion of more explanatory variables
than more general non-parametric models. Furthermore, additive models are relatively
easy to visualize and interpret. Using spline bases to approximate each of the smooth
functions as a linear combination of basis functions only depending on known quantities
permits the used of existing linear quantile regression software to fit the models.

The software used is “R”, together with the add-on package “quantreg”, which can
both be freely downloaded from http://www.r-project.org. An example R-script
is included in Appendix A. “R” could be used to easily extend a given wind power
forecast system, and it is even possible to embed “R” into other software products.

With respect to the analysis of the specific data it is noted that the risk indices, which
all are inspired by [80, 79], does not seem to have very much influence on the 25% and
75% quantiles. However, it is noted that [80, 79] consider horizons ranging from 0 to 24
hours, whereas we consider horizons ranging from 18 to 36 hours. Note that the horizons
mentioned does not take into account the calculation time of HIRLAM. Not surprisingly
the most influential variable is the forecasted wind power production. Furthermore, the
results show increased uncertainty for westerly winds. Also, the effect of the horizon on
the quantiles is minor.
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Table 4.1: Observed frequencies (test data) below forecasted 25% quantile or above the forecasted 75%
quantile for the four models considered. Both values for the full test set and for the test set split into two
parts based on a presumably important model change in DMI-HIRLAM, cf. Section 4.2.

Basic Full Without Incl. risk
density

All test data
Above 18% 13% 17% 17%
Center 61% 58% 53% 52%
Below 21% 29% 30% 31%

Test data before 2/9-2003
Above 19% 10% 19% 19%
Center 62% 64% 53% 52%
Below 19% 26% 28% 29%

Test data after 2/9-2003
Above 16% 16% 15% 14%
Center 60% 50% 50% 53%
Below 24% 34% 35% 33%

[10] shows that the optimal quantile to use depend on the actual prices in the market.
This will require a range of quantile models to be applied in parallel. Using models with
several predictors and spline bases as suggested in this chapter is likely to result in cross-
ing of some of these quantiles. Ideally, the coefficients estimated should be constrained
in order to avoid crossings. However, we are not aware of software which can handle
this easily. In the situation just outlined it is probably sufficient to use the quantile model
indicated by the prices in the market and disregard the fact that this quantile model may
cross some other quantile models.

As just outlined quantile regression is characterized by estimating separate models
for each quantile. As a consequence crossing of quantiles may occur, indeed in the anal-
ysis of the data presented in this chapter a few crossings of the 25% and 75% quantiles
occurred. In practice this probably indicates low uncertainty and is therefore of less prac-
tical importance. It is however undesirable from a theoretical point of view. One solution
would be to start with the median (50% quantile) and find solutions to successive lower
and higher quantiles under the restriction that the quantiles does not cross. The restric-
tion should be valid for all possible values of the explanatory variables. Considering the
data at hand this could be approximated by considering all observations, i.e. the number
of restrictions will be high. We believe that methods based on approximations of the full
distribution should also be investigated since this will automatically supply non-crossing
quantiles.
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Chapter 5

An expert model for the estimation of

prediction intervals of wind power

Abstract

In this Chapter is developed and evaluated a generic method appropriate for the estimation of
prediction intervals of wind generation. In order to avoid a restrictive assumption on the shape
of prediction error distributions, focus is given to an empirical and distribution-free approach.
Also, a fuzzy inference model is introduced in order to integrate the expertise on the characteris-
tics of prediction errors for providing conditional interval forecasts. The proposed method can be
considered for providing full predictive distributions of wind generation. In parallel, the required
properties of probabilistic predictors are given, followed by the description of a non-parametric
framework for the verification of wind power probabilistic forecasts in the form of quantiles or
intervals. This framework is consequently used for evaluating and analyzing the skill of the
proposed approach. This one proves to be reliable and it is shown how its resolution may be en-
hanced by using the forecaster’s expertise. Finally, some guidelines are given for the application
of the method to online prediction exercises.

5.1 Introduction

In the present Chapter, our aim is to develop an appropriate method for estimating pre-
diction intervals of wind generation, which can be applied to any state-of-the-art point
forecasting method. For that purpose we exploit the characterization of prediction errors
carried out in the frame of the Work Package 2 (WP2) of the European project Anemos
(cf. Anemos Deliverable Report 2.1 [64]). Since it was shown that these characteristics
were shared by all point forecasting approaches (either of the physical or of the statistical
type), we use that aspect for developing a generic method. Also, focus is given to the
development of a distribution-free approach, suitable for nonstationary, nonlinear and
bounded processes. It is explained why such an approach can be applied to any point
prediction method. Also, the way it can be straightforwardly applied for the wind gen-
eration prediction problem is detailed.

The second part of the Chapter is devoted to the assessment of the quality of the
resulting prediction intervals. Quality is related here to a statistical performance follow-

67



Methods for Estimating the Uncertainty of Wind Power Forecasts

ing Murphy’s terminology [68]. Interval forecasts have attracted attention only recently
and the assessment of their quality is more complicated than for the case of point pre-
dictions. A non-parametric framework for carrying out this performance assessment is
introduced. Then, an evaluation of the derived method quality is given by applying the
proposed framework to various case-studies and on several state-of-the-art point pre-
diction methods. These case-studies are the Klim and Tunø Knob wind farms, that were
already considered in WP2. Also, the three different methods we use for point forecasting
were evaluated in the frame of WP2. These prediction approaches are denoted by M1, M2
and M3. In complement, we highlight the influence of the parameters of the introduced
interval forecasting method on some particular aspects of the quality of prediction inter-
vals. This allows us to derive guidelines for the application of the developed approach
to online forecasting exercises.

5.2 Different types of statistical intervals

Often, it is needed to draw conclusions on the characteristics of a process from a limited
amount of available knowledge. Statistics are usually calculated from limited samples
and may prove to be uncertain. Perhaps the most illustrative example is that of public
opinion polls, for which panels composed by few hundreds or thousands people are used
to tell what is the average opinion of millions of people in a country. Since this population
sampling induces uncertainty, calculated statistics are therefore associated with estimates
of their accuracy, in the form of intervals. Depending on the type of decision to make from
a given statistic, several types of related intervals may be defined. For an introduction to
these different types of statistical intervals, we refer to [37].

Our concern here is about the accuracy of point forecasts. Two types of intervals
appear to be relevant for that purpose: confidence intervals and prediction intervals. There
is a fundamental difference between these two. Given a sample population {pt}t=1,...,T , a
confidence interval is meant for giving a measure of confidence on the estimate
θ̂({pt}t=1,...,T ) of a parameter θ for the whole population, whereas a prediction interval is
meant for giving the range of values within which the next randomly selected individual
pt (t > T ) from that population may lie, with a certain degree of confidence.

In order to describe how this can be translated to the forecasting problem, let us con-
sider the case of a statistical model g designed for 1-step ahead prediction. The param-
eters w of that statistical model are estimated over a training set consisting of NL pairs
{yt, pt}t=1,...,NL

, where yt is a vector containing past values of p (up to time t − 1) plus
eventually past values and forecasts of explanatory variables, and pt is the observation at
time t. In a general manner, yt includes a number of past values pt−i (i = 1, . . . , l) of the
variable of interest, plus past values of some explanatory variables xt−i (i = 1, . . . ,m),
and eventually forecast values of these explanatory variables x̂t/t−1. Writes

yt = (pt−1, pt−2, . . . , pt−l,xt−1,xt−2, . . . ,xt−m, x̂t/t−1). (5.1)
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These data pairs are assumed to be generated according to the following process:

pt = g(yt,w) + et, (5.2)

where w are the parameters of the chosen model g and {et} is a zero mean random vari-
able. For t > NL the trained model g(yt, ŵ) (with ŵ estimated by considering a quadratic
loss function) will then produce at time t a forecast p̂t+1/t that is an estimate of the mean
p̄t+1 of the target distribution F p

t+1 at time t + 1, given yt+1
1. The uncertainty in the es-

timate of the mean of the target distribution partly comes from the fact that one uses a
finite sample for training the model, which consists in an incomplete knowledge of the
true process. In addition, observations may integrate a noise component coming from
data acquisition devices. This uncertainty is also due to the choice of the model that may
not reflect the true behavior of the process and to the way the model parameters w are
estimated. A confidence interval associated to p̂t+1/t is hence a measure of the confidence
in the estimation of the mean p̄t+1 of the target distribution. Since p̂t+1/t is not an estimate
of the true outcome pt+1, this interval does not give the confidence in the estimation of
the true effect pt+1.

Alternatively, a prediction interval associated to a point forecast is a measure of the
accuracy of that point forecast with respect to the true outcome pt+1, by giving a range of
potential values. A prediction interval necessarily encloses the corresponding confidence
interval [41]. Figure 5.1 is an illustrative example of the difference between confidence
and prediction intervals. The solid curve represents a probability distribution of expected
wind generation at time t + 1. The two dashed vertical lines correspond respectively to
the mean p̄t+1 of that distribution (bold) and to a wind power point forecast p̂t+1/t, which
is an estimate at time t of that mean. The dark shaded area stands for the confidence
interval associated to p̂t+1/t, while the light shaded area is for the interval forecast. The
solid vertical line gives the observed power value at time t + 1.

Although we have taken the example of a statistical model designed for 1-step ahead
predictions, this reasoning can be extended to the case of other types of models (i.e. multi-
step ahead models and physical models): they all aim at estimating a particular point of
the target distribution, which is its mean in most of the cases. Then, a confidence inter-
val will always correspond to the confidence in the estimate of the expected outcome,
whereas a prediction interval associated to a point forecast will give the accuracy of that
estimate with respect to the true outcome. Because we are mostly interested in that sec-
ond type of uncertainty assessment we will turn our attention to prediction intervals from
now on.

Formally, a prediction interval Î
(α)
t+k/t, alternatively called interval forecast, estimated at

time t for lead time t+k, is a range of values within which the true effect pt+k is expected
to lie with a certain probability (1 − α), denoting its nominal coverage rate:

P
(

pt+k ∈ Î
(α)
t+k/t

)

= P
(

pt+k ∈ [L̂
(α)
t+k/t, Û

(α)
t+k/t]

)

= 1 − α. (5.3)

1See [18] for a proof in the specific case of univariate processes. It is exlained how this proof may be
straightforwardly extended to the case of multivariate processes such as the one we consider here.
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An interval forecast is then specified by its respectively lower and upper bounds L̂
(α)
t+k/t

and Û
(α)
t+k/t. Note that we will prefer the term ‘nominal coverage rate’ (or alternatively

‘degree of confidence’) instead of the widely used ‘confidence level’ term when referring
to the probability associated to interval forecasts, so that the reader does not confuse
them with the more classical confidence intervals.

Figure 5.1: Illustrative example of the difference between confidence (light shaded area) and prediction
(dark shaded area) intervals. The confidence interval is a measure of the confidence in our estimate p̂t+1/t

of the expectation p̄t+1, whereas the prediction interval is related to the accuracy of the point forecast p̂t+1/t

with respect to the true effect pt+1.

Most of the times prediction intervals are central prediction intervals: there is the
same probability (α/2) for a non-covered outcome to be above or below the interval
bounds. Then, these bounds correspond to the quantiles2 with proportion (α/2) and
(1 − α/2) of the predictive distribution F̂ p

t+k/t of future events:

L̂
(α)
t+k/t = r̂

(α/2)
t+k/t , P

(

pt+k < L̂
(α)
t+k/t

)

= α/2, (5.4)

Û
(α)
t+k/t = r̂

(1−α/2)
t+k/t , P

(

pt+k < Û
(α)
t+k/t

)

= 1 − α/2. (5.5)

Central prediction intervals are hence centered on the median of the predictive distribu-
tion F̂ p

t+k/t.

2The quantile r
(α) with proportion α of the distribution F

X of a random variable X is defined as the
value x such that P(X ≤ x) = α.
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Traditionally, emphasis is given in the literature to the computation of prediction in-
tervals for a Normal distribution, or more generally for a symmetric target distribution
[13, 22, 24, 37, 41]. Thus, estimated prediction intervals are centered on the point predic-
tion itself and give the equally probable upward and downward margins in which the
future outcome may lie. Due to symmetry, the mean and median of these target distri-
butions are equal. Moreover, the upper and lower sides of the intervals have the same
size. Therefore, whatever the nominal coverage rate, the point forecast is included in the
interval forecast it is associated to. For a nonlinear and bounded process such as wind
generation, probability distributions of future power output exhibit some skewness. For
these asymmetric distributions, the median may significantly differ from the mean, and
thus central prediction intervals (for rather low nominal coverage rate) may not even
cover the point forecast value. This is why interval forecasts can be alternatively con-
structed in the form of intervals Îc(α) centered on the point forecast itself

Îc(α)(p̂t+k/t) = [L̂c
(α)
t+k/t, Ûc

(α)
t+k/t], (5.6)

as equally probable positive and negative margins in which the actual outcome may lie,
for a given nominal coverage rate (1 − α):

P
(

pt+k ∈ [L̂c
(α)
t+k/t, p̂t+k/t]

)

= P
(

pt+k ∈ [p̂t+k/t, Ûc
(α)
t+k/t]

)

= (1 − α)/2. (5.7)

Such a type of intervals will be referred to as prediction-centered interval forecasts.
They consist in separately modeling two different probability distributions, which are the
ones for the respectively positive and negative errors. Then, one notes that even if L̂c

(α)
t+k/t

and Ûc
(α)
t+k/t are quantiles of the whole predictive distribution, we do not know the pro-

portions they correspond to. Since we aim at directing our work towards a probabilistic
view of wind power forecasting, our preference goes to central prediction intervals, since
they model the target distribution F p

t+k as a whole. Consequently, by specifying a nom-
inal coverage rate (1 − α), we will then determine the quantiles with proportions (α/2)

and (1 − α/2) of F̂ p
t+k/t.

Finally, as for point forecasts, prediction intervals issued at time t are produced from
the information set Φt that gathers the available information up to that time. Therefore,

even if we use the notation Î
(α)
t+k/t in the following of the Chapter, it actually stands for

Î
(α)
t+k/t(Φt).

5.3 Basic parametric approaches for prediction interval estima-

tion

An approach is said to be parametric if there is an underlying assumption on the distribu-
tion one tries to model. Inversely, a non-parametric (or distribution-free) approach does not
rely on such an assumption.

The simplest parametric approach for estimating prediction intervals is the method
proposed by Box and Jenkins [8]. It follows the assumption that for a model (such as the
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multivariate one given by Equation (5.2)) the {et} sequence is independent and identi-

cally distributed Gaussian with zero mean and variance σ2
e < ∞, et

i.i.d.
∼ N(0, σ2

e). By
using an estimate σ̂2

e of the variance, the one-step ahead interval forecasts with nominal
coverage rate (1 − α) are such that:

Î
(α)
t+1/t =

[

p̂t+1/t − zα/2.σ̂
2
e , p̂t+1/t + z1−α/2.σ̂

2
e

]

, (5.8)

where zα/2 and z1−α/2 are the quantiles with proportion (α/2) an (1 − α/2) of the stan-
dard Normal distribution N (0, 1). Then, k-step ahead interval forecasts can be produced
similarly, by considering estimates of the variance σ̂2

e,k of the random shock for k-step
ahead point predictions

Î
(α)

t+k/t =
[

p̂t+k/t − zα/2.σ̂
2
e,k, p̂t+k/t + z1−α/2.σ̂

2
e,k

]

. (5.9)

By assuming that errors in consecutive step-ahead forecasts are mutually indepen-
dent and distributed Gaussian with zero mean and constant variance, Makridakis et al.
[63] proposed to compute the prediction intervals of Equation (5.9) with an ‘approximate’
formula for σ̂2

e,k, which states that

σ̂2
e,k = k.σ̂2

e . (5.10)

It has been shown by Koehler [48] that there was no theoretical justification for Equa-
tion (5.10), and that the assumptions mentioned above about the error process could only
be true for a random walk model. Therefore, using such a simple approximation of the
k-step variance would yield very inadequate results.

Instead of relying on approximate formulae for estimating the k-step ahead variance,
another possibility is to use the historical performance of the predictor:

σ̂2
e,k = SDE2(k), (5.11)

where SDE(k) is the standard deviation of the k-step ahead forecasting errors over a
given evaluation period, as defined in [62]. Alternatively, one may consider the use of
time-adaptive statistics for estimating recent SDEs of the prediction method.

Intervals estimated from Equation (5.9) are symmetric around the point prediction.
Even if the Gaussian assumption does not hold, the Box-Jenkins method is often fol-
lowed in practice. When considering nonlinear (and chaotic) time-series such a basic
estimation of prediction interval bounds will lead to poor results [52]. This has recently
been illustrated for the specific case of wind power forecasting [78].

We know that the nonlinearity aspect is due to the energy conversion process. When
thoroughly studying conditional distributions of wind speed prediction errors (given
predicted wind speed), Lange [56] noticed that they could be modeled with Gaussian dis-
tributions whose standard deviations equal the standard deviation of unconditional error
distributions of wind speed forecasts. In parallel, he proposed a model based on the local
derivative of the wind park power curve for describing the way wind speed intervals
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would be mapped to power intervals. He used that model for estimating the standard
deviation of conditional distributions of power prediction errors given predicted power
output. Then, a Gaussian assumption was considered for calculating the (1 − α) predic-
tion interval of wind generation [55]. The first shortcoming of this approach is that power
prediction errors are assumed to be distributed Gaussian. This could be easily overcome
by estimating (1 − α) intervals on the error distributions of wind speed and by passing
these intervals through the wind park power curve for obtaining non-Gaussian intervals
of wind power. This idea has already been proposed by Brown et al. [12]. The second
shortcoming is that the method does not account for the modeling error itself, owing to
the spatial refinement of the NWPs or to the model used for the power curve. Also, such
a method is limited for application to physical methods only since it requires an explicit
power curve. Finally, standard deviations of wind speed error distributions are not easy
to obtain since wind forecasts and related measurements are often not available at the
level of a wind farm. They may be provided as a guess by meteorological offices based
on their expertise, but it is unlikely that resulting prediction intervals would be accurate.

The nonlinear and bounded nature of the wind generation process is taken into ac-
count by the method proposed by Luig et al. [61], which is based on modeling predictive
distributions of power output using β-distributions. Such distributions are bounded be-
tween 0 and 1 (like is normalized power production) and their shape is controlled by
two parameters α and β. These two parameters are a function of the mean and the vari-
ance of the distribution. Luig et al. proposed to set the mean of predictive β-distributions
equal to point forecast values given by a power prediction approach. In parallel, the
variance of these distribution is determined from a study of the historical performance
of the considered prediction method. Different estimates of the variance are considered
depending on the range of predicted power (i.e. four ranges in this case). Central pre-
diction intervals are provided consequently by quoting quantiles of estimated predictive
distributions. This approach is expected to offer a significant improvement against inter-
vals produced from a Gaussian assumption. However, considering only certain variance
estimates for some ranges of predicted power values does not reflect the continuous vari-
ability of the power prediction uncertainty, as described in [64]. Moreover, the choice of
β-distributions is also a restrictive assumption on the predictive distributions of wind
generation.

5.4 Development of a distribution-free approach appropriate for

non-linear and bounded processes

When it is not possible to use theoretical formulae, and in the case for which the hypoth-
esis that prediction errors follow a known distribution appears to be a weak assump-
tion, an alternative solution is to develop non-parametric approaches for the estimation
of predictive distributions or interval forecasts [15]. More generally, distribution-free
approaches are appealing since they are not related to any assumption concerning the
error-generating process, i.e. to a particular model. Therefore, they are suitable for esti-
mating the uncertainty of different types of forecasting methods either of the statistical
or of the physical types. This is also valid if forecasts are the results of some combination
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procedure [89].

Quantile regression is a family of non-parametric methods that aim at estimating pre-
dictive quantiles for a given proportion. It has recently been considered for producing
interval forecasts of wind generation [10, 73] in two different manners. Nielsen et al. [73]
proposed a quantile regression method that uses as input point forecasts produced by a
state-of-the-art forecasting method, plus some other explanatory variables e.g. the wind
speed and direction forecasts that were previously utilized by the point prediction tool.
That method can hence be considered for application to already installed point prediction
methods in order to associate point forecasts with an estimation of their accuracy. Alter-
natively, Bremnes [10] developed a slightly different approach, which is based on linear
quantile regression with only NWPs as input. This approach has the advantage that
one then avoids the point prediction step for producing interval forecasts of wind gen-
eration. An important shortcoming of quantile regression approaches is that a specific
model needs to be set-up and trained for every quantile of the predictive distribution to
be estimated. Therefore, one already has to consider two different models for estimating
a single prediction interval. And, for having an adequate estimation of complete pre-
dictive distributions, say by forecasting quantiles for every 0.05 proportion, this would
lead to 19 models (!). Nielsen et al. [73] pointed out that since models are independently
trained, they may result in inconsistent results in certain situations e.g. crossing quan-
tiles. This is not desirable from both a theoretical and practical point of view. Moreover,
these models are site-dependent: for each new wind farm they are applied to, a dataset
must be collected in order to estimate their parameters through a training process.

In the present work, our aim is to propose not only a non-parametric approach, but
also an approach that can be utilized for easily estimating multiple power prediction
intervals (and thus several quantiles) at once. Consequently, the target method has to
directly construct the predictive distribution of wind generation at once — this was one
of the conclusions by Nielsen et al. [73] for avoiding the crossing-quantile problem. This
is possible if one considers empirical approaches such as the one developed in the follow-
ing. In a first stage, we introduce the main assumptions related to empirical approaches
for prediction interval estimation, as well as the underlying methodology. Then, our
contribution is to propose an upgrade of the empirical methods introduced in the liter-
ature, which is appropriate for non-linear and bounded processes such as wind genera-
tion. Paragraph 5.4.2 describes the classification of forecast conditions related to different
characteristics of prediction error distributions. The fuzzy inference model developed in
Paragraph 5.4.3 provides conditional distributions of prediction errors as a function of
forecast conditions, in the form of combined probability distributions. By dressing point
predictions with the estimated conditional distributions of prediction errors, one obtains
predictive distributions of wind generations. Finally, two approaches for the combination
of empirical distribution functions are given in Paragraph 5.4.4.
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5.4.1 Hypothesis and development of empirical methods for prediction inter-

val estimation

In general, as ‘empirical’ are characterized methods that origin from knowledge or ex-
perience. Here, the empirical nature of the prediction interval estimation method stands
for the fact that interval forecasts are produced from the witnessed behavior of the point
forecasting method it is applied to. The behavior of the point prediction approach is
characterized by its recent performance.

The development and application of empirical-type approaches for prediction inter-
val estimation can be traced back to the works by Williams and Goodman [92]. The
authors fitted a regressive model for producing 18-step ahead forecasts of the number
of phone lines in service over a dataset consisting of 169 data points, and envisaged to
associate them with an estimation of their accuracy. Therefore, they estimated prediction
intervals with the method described hereafter, by assuming that future forecast errors
would be distributed in the same way than the recent ones. They noticed that prediction
errors were not Normally distributed — they actually seemed to follow a Γ-distribution.
And, despite the rather limited dataset, they showed that this basic empirical approach
was much more efficient than usual Box-Jenkins methods for estimating prediction in-
tervals, for various degrees of confidence. The Williams-Goodman method has been
applied (with minor changes) on some other forecasting exercises for which prediction
errors proved to be not-Normally distributed [45]. More particularly, Alves da Silva and
Moulin [1] used a similar method for estimating prediction intervals associated to point
forecasts produced with a neural-network-based method, for the short-term load fore-
casting problem. The authors compared the empirical interval forecasts with two other
approaches, namely ‘error output’ (which is based on a second neural-network model
trained for estimating the prediction error of the first neural network) and ‘multilinear
regression’ (which is based on a regressive model with variables the output of the hidden
layer neurons and coefficients the weights of the output neuron for estimating the pre-
diction error variance — intervals are consequently computed following the Box-Jenkins
method). Conclusions of the study were in favor of the use of the empirical approach.

The first step before computing prediction intervals is to collect the prediction errors
the method made in the past. The intervals that are going to be computed will rely on the
most recent information on the method’s performance. For that purpose, a window in
the past (a certain number of hours) is defined and used as a sliding window for storing
the errors. The size n of this window determines the size of the samples of errors. At time
t, a separate sample St,k is defined for each prediction horizon k (i.e. for 1-hour ahead,
2-hour ahead, and so on) since we have shown that prediction uncertainty significantly
varies with the look-ahead time. The collected errors are the most recent ones at a given
time: when the actual measured wind power is known, that value is compared with
all the past predictions made for that time. Using the most recent information on a given
method performance for estimating future uncertainty is motivated by the non-stationary
aspect of wind power prediction errors. Write Ωt,k the set of prediction errors associated
to k-step ahead point predictions up to time t:

Ωt,k = {ǫt−i+k/t−i, i ∈ N, i ≥ k}, (5.12)
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where ǫt−i+k/t−i is the normalized prediction error related to the point forecast p̂t−i+k/t−i.
Since the wind generation process is bounded, we will hereafter only deal with normal-
ized errors and predicted values (both normalized by Pn). Straightforwardly, by renum-
bering the elements of Ωt,k, an error sample St,k containing the last n k-step ahead point
prediction errors at time t consists in

St,k = {ǫi ∈ Ωt,k, i = 1, . . . , n}. (5.13)

The empirical distribution function F̂ ǫ
t,k of errors, at time t and for horizon k, is de-

fined as the discrete distribution that puts probability 1/n on each element of St,k. It can
be shown that F̂ ǫ

t,k is the non-parametric maximum likelihood estimate of the true dis-

tribution function of errors F ǫ
t,k (see [26], p. 310). Consequently, any parameter θ̂(F̂ ǫ

t,k)

estimated from F̂ ǫ
t,k is the non-parametric maximum likelihood estimate of the parame-

ter θ(F ǫ
t,k). For practical use, we introduce the cumulative distribution function Ĝǫ

t,k(ǫ),
which gives the fraction of errors less than or equal to ǫ

Ĝǫ
t,k(ǫ) =

1

n
#{ǫi ∈ St,k | ǫi ≤ ǫ}. (5.14)

The underlying assumption of the empirical approach is that future uncertainty can
be expressed from the recently witnessed behavior of the point prediction method. This
means that we consider here that the empirical distribution function of errors F̂ ǫ

t,k can
be seen as an estimate of the distribution of errors associated to the point forecast p̂t+k/t.
Therefore, an empirical predictive distribution F̂ p

t+k/t of wind power output at lead time
t + k can be constructed as following:

F̂ p
t+k/t → {p̂t+k/t + ǫi, ǫi ∈ St,k}, (5.15)

with an equal probability 1/n associated to each element of F̂ p
t+k/t.

Since the bounds of the central prediction interval Î
(α)

t+k/t with nominal coverage rate
(1−α) are defined as the quantiles with proportion (α/2) and (1−α/2) of the predictive
distribution F̂ p

t+k/t, they are given by:

L̂
(α)
t+k/t = p̂t+k/t + Ĝǫ

t,k
−1(α/2), (5.16)

Û
(α)
t+k/t = p̂t+k/t + Ĝǫ

t,k
−1(1 − α/2). (5.17)

Such a construction of the predictive distribution F̂ p
t+k/t of wind generation from re-

cent performance implicitly assumes the representativeness of the sample data. Actually,
this hypothesis cannot be completely exact and then the prediction intervals may only
provide a lower bound on the real forecast uncertainty. Note that parametric interval es-
timation methods described in Section 5.3 also assume that near-future uncertainty will
be like the historical one, since estimates of the error variances are based on past perfor-
mance of the considered prediction method. Secondly, it is implicitly assumed that the
sample is a random sample, that we do not apply any selection procedure that will then
introduce a bias in the uncertainty estimation. This assumption is also not completely
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respected for the case of k-step wind power forecasting since consecutive prediction er-
rors may be correlated3 [70]. However, we will see that breaking this assumption will not
have a significant influence on the performance of prediction intervals of wind genera-
tion.

5.4.2 Classification of forecast conditions

When predicting nonlinear processes, it is of common knowledge that the shape of the
prediction error distributions evolves as a function of the value of the variable of interest
[7, 43]. For the specific case of wind power forecasting, there may also be other vari-
ables that have an impact on the characteristics of forecast error distributions. We will
refer to these variables as influential variables. They obviously include predicted power
but they may also include forecast wind speed and direction, and eventually some other
explanatory variables that are expected to have an influence on the characteristics of pre-
diction error distributions. However, even by applying an empirical approach such as
the one presented in the previous Paragraph, prediction intervals will be estimated in
the same way whatever the level of influential variables: they actually are unconditional

interval forecasts. It is unlikely that samples of prediction errors would be representative
of the current — and thus conditional — uncertainty. An illustrative example would be
the case where collected errors correspond to situations for which the level of predicted
power was low and where the current power prediction is in the medium power range.
It is hence necessary to propose a more dynamic approach that would be appropriate for
estimating conditional prediction intervals. Our proposal is then to enhance the empirical
method initially described by Williams and Goodman [92] for giving an assessment of
the prediction uncertainty related to current forecast conditions. The present Paragraph
concentrates on the classification of these forecast conditions.

We define as a forecast condition ct,k at time t and horizon k the association of a set of
values of the considered influential variables. Denote by vl

t,k the lth influential variable
(say that we consider L different variables, hence l = 1, . . . , L) related to the point predic-
tion p̂t+k/t. We make the assumption that all the influential variables are bounded4 and
can thus be normalized. Consequently, we have

vl
t,k ∈ Vl = [0, 1] ∀l, t, k. (5.18)

Prediction errors are also normalized and bounded, though they lie in the range [−1, 1].

What we referred to as a forecast condition at time t for lead time t + k is uniquely
defined by the association of the values of each of the L influential variables:

ct,k = {v1
t,k, v

2
t,k, . . . , v

L
t,k}, ct,k ∈ C = V1 × V2 × . . . × VL, (5.19)

3Actually, there exists a correlation between prediction errors for successive look-ahead times i.e. between
et+k/t and et+k+i/t, i > 0, as well as between predictions for the same look-ahead time but issued at consec-
utive time origins i.e. between et+k/t and et+k+i/t+i, i > 0. Here, our concern is mainly about the first type
of correlation, since interval forecasts are estimated independently for each prediction horizon.

4This assumption about the bounded nature of influential variables appears reasonable: the range of
physically possible values for both measured or forecast variables obviously have a lower and an upper
bound. If outside of that range, these values can be deemed as suspicious or even as outliers.
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where C is the set of possible forecast conditions at any time t and look-ahead time k.

Then, we map C with a finite number of subsets to which are associated different
kinds of characteristics of prediction error distributions. For that purpose, consider Jl

ranges of possible values for each of the influential variables vl (l = 1, . . . , L). Conse-
quently, we define as V jl

l the subset of Vl that contains the variable values in the jl
th

range. By construction, Vl is the union of all of its subsets

Vl = V 1
l ∪ V 2

l ∪ . . . ∪ V Jl
l , ∀l, (5.20)

such that none of these subsets are overlapping

V i
l ∩ V j

l , = ∅, ∀l, i, j, i 6= j. (5.21)

Now that the sets of possible values for the various influential variables are split into
subsets accounting for different characteristics of prediction error distributions, C can
also be split into all the possible associations of the subsets for the various influential
variables. Write

C({(l, jl)}) = C((1, j1), . . . , (L, jL))) = V j1
1 × V j2

2 × . . . × V jL
L , ∀jl, (5.22)

these subsets corresponding to the jl
th range of values for each of the L different influen-

tial variables. This hence yields Ns subsets, where

Ns =

L
∏

l=1

Jl. (5.23)

If for instance one considers two influential variables (say forecast wind power and
forecast wind direction) for which sets of possible predicted values are split into two
subsets, then C((1, 1), (2, 2)) corresponds to the subset of forecast conditions for which
predicted wind power lies in its first subset and predicted wind direction in its second
subset. Again, by construction, C is the union of all of its subsets, such that none of them
are overlapping. Note that this classification of the forecast conditions with different re-
lated characteristics of prediction error distributions can only be the result of a thorough
analysis of the error-generating process. Analyses of forecasting errors are often very
informative and allow the analyst to gain expertise on the prediction problem.

Since our aim is to associate specific characteristics of prediction error distributions to
each subset of C, we extend here the empirical approach described in Paragraph 5.4.1, by
associating a collection of recent prediction errors to each of these subsets. As introduced
in Equation (5.12), Ωt,k is the set of all the past k-step ahead prediction errors up to time t.
Define now Ωt,k({(l, jl)}) the subset of past prediction errors corresponding to the subset
of forecast conditions C({(l, jl)}):

Ωt,k({(l, jl)}) = {ǫt−i+k/t−i ∈ Ωt,k | ct−i,k ∈ C({(l, jl)})}, ∀jl. (5.24)

And finally, as we did in Equation (5.13), we can extract from each subset Ωt,k({(l, jl)})
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a sample St,k({(l, jl)}) of size n containing the last n forecasting errors, but in similar

forecast conditions:

St,k({(l, jl)}) = {ǫi ∈ Ωt,k({(l, jl)}), i = 1, . . . , n}, ∀jl. (5.25)

Therefore, each of the subsets C({(l, jl)}) is characterized by its own empirical distri-
bution function F̂ ǫ

t,k({(l, jl)}), drawn from a different sample of past errors. Note that
F̂ ǫ

t,k({(l, jl)}) is a conditional distribution function since it is an estimate of the distribu-
tion function of prediction errors given that ct,k is an item of C({(l, jl)}). This empirical
distribution function puts probability 1/n on each element of St,k({(l, jl)}):

F̂ ǫ
t+k/t({(l, jl)}) → {ǫi, ǫi ∈ St,k({(l, jl)})}, (5.26)

5.4.3 The fuzzy inference model for producing conditional distribution func-

tions

The previously described classification is the basis for deriving an empirical and distribution-
free method that provides conditional prediction intervals, given particular forecast con-
ditions. The choice of the influential variables, as well as the splitting of the sets of
possible values into various subsets with different characteristics of related prediction
error distributions, are the result of the expertise one has on the process of interest. It
was explained in Paragraph 5.4.1 how to dress a point prediction p̂t+k/t with an empiri-
cal distribution of prediction errors F̂ ǫ

t+k/t for producing empirical distributions of wind

generation F̂ p
t+k/t. Hereafter, we develop a fuzzy inference model hf (ct,k) which gives

conditional distributions of prediction errors F̂ ǫ,∗
t+k/t(ct,k) given the forecast condition ct,k.

Fuzzy logic is an alternative paradigm to that of binary logic for which an event can
only be associated to a true or false statement (and therefore 1 or 0). It considers instead
that to each event can be associated a degree of truth, which is a continuous function
between 0 and 1. For an introduction to the fuzzy logic theory, we refer to [91]. In the
previous Paragraph, the set C of possible forecast conditions has been mapped with sev-
eral subsets C({(l, jl)}) related to different characteristics of the forecast uncertainty. Par-
ticularly, we have explained that a given subset C({(l, jl)}) is defined as the association of
the subsets V jl

l (l = 1, . . . , L) for the various considered input variables (Equation (5.22)).
Here, we associate a fuzzy set Ajl

l to each of these V -subsets. A fuzzy set is characterized
by a membership function mjl

l (vl
t,k), which tells what the degree of truth of vl

t,k being an

element of V jl
l is:

mjl
l : vl

t,k → mjl
l (vl

t,k) ∈ [0, 1]. (5.27)

The subset of forecast conditions C({(l, jl)}) is defined as the association of the L

subsets V jl
l . Therefore, the degree of truth of a given forecast condition ct,k = {vl

t,k}l=1,...,L

being an element of C({(l, jl)}) is given by the product of the membership values for
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every influential variable:

m(ct,k, {(l, jl)}) = m (ct,k ∈ C({(l, jl)})) =

L
∏

l=1

mjl
l (vl

t,k). (5.28)

The basic element of the fuzzy inference model we develop here consists in fuzzy
rules. Such a fuzzy rule can be expressed as

“ IF v1
t,k ∈ D(Aj1

1 ) and . . . and vL
t,k ∈ D(AjL

L ) THEN ǫt+k/t ∼ F ǫ
t,k({(l, jl)}) ", (5.29)

where D(Ajl
l ) stands for the support of the fuzzy set Ajl

l . The ‘IF’ part is referred to as
the premise of the rule, whereas the ‘THEN’ part is called the conclusion. Note that the
above rule is equivalent to:

“ IF ct,k ∈ D(AC({(l, jl)})) THEN ǫt+k/t ∼ F̂ ǫ
t,k({(l, jl)}) ". (5.30)

where

D(AC({(l, jl)})) = D(Ajl
1 ) × . . . ×D(AjL

L ). (5.31)

Actually, the rule (5.30) states that if the forecast condition ct,k can be considered as being
an item of a given subset C({(l, jl)}) of C, then the prediction error ǫt+k/t follows the
distribution F ǫ

t,k({(l, jl)}).

Then, a rule base is composed by rules similar that given by (5.30), which span all the
possible subsets of C. The number of fuzzy rules is hence given by the number of subsets
Ns used to map the set of possible forecast conditions. For convenience, we associate
an index i to each of the Ns subsets, and we introduce the function η(i) that returns the
{(l, jl(i))}l=1,...,L pairs that serve to identify the corresponding subset:

η : i ∈ {1, . . . , Ns} → ({(l, jl(i))}l=1,...,L), (5.32)

such that each of the {(l, jl(i))}l=1,...,L pairs is given by a unique value of i. Consequently,
the ith rule of the fuzzy rule base is of the form:

“ IF ct,k ∈ D(AC(η(i))) THEN ǫt+k/t ∼ F ǫ
t,k(η(i)) ", (5.33)

where

D(AC(η(i))) = D(A
jl(i)
1 ) × . . . ×D(A

jL(i)
L ). (5.34)

The inference procedure for the fuzzy logic model consists in applying the rule-base
to the forecast condition ct,k in order to provide the overall conclusion as the weighted
average of the conclusion of each rule. The weight wi for each rule is given by the degree
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of truth of the related premise, normalized by the sum of the weights for each rule:

wi(ct,k) =
m(ct,k, η(i))

∑Ns
i=1 mη(i)(ct,k)

, i = 1, . . . ,Ns, (5.35)

with m(ct,k, η(i)) defined by Equation (5.28).

By doing so, the fuzzy model tells what is the contribution of each of the F ǫ
t,k(η(i))

(i = 1, . . . , Ns) error distributions in the error distribution F ǫ
t,k related to the current

forecast condition ĉt,k. Finally, the fuzzy logic model can be written as

hf : ct,k → ǫt+k/t ∼ F ǫ,∗
t,k =

Ns
∑

i=1

wi(ct,k).F
ǫ
t,k(η(i)). (5.36)

Let us draw an illustration of the fuzzy inference process by going back to the ex-
ample of the above Paragraph, in which predicted power and forecast wind direction
were considered as influential variables. For both input variables, the sets of possible
values were split into two subsets. This would yield four samples of prediction errors
St,k((1, 1), (2, 1)), St,k((1, 1), (2, 2)), St,k((1, 2), (2, 1)), St,k((1, 2), (2, 2)) related to different
subsets of forecast conditions C((1, 1), (2, 1)), C((1, 1), (2, 2)), C((1, 2), (2, 1)), C((1, 2), (2, 2)),
for a given time t and look-ahead time k. Moreover, the fuzzy logic model in that case
would have a rule-base composed by four rules, one for each of the possible C-subsets.
Then, imagine that for given time t and horizon k the degrees of truth of the current fore-
cast condition ct,k being part of the C-subsets are evaluated to be respectively equal to 0.3,
0.5, 0.15 and 0.05. The fuzzy rule-base (5.36) then defines the corresponding distribution
of prediction errors as:

ǫt+k/t ∼ F ǫ,∗
t,k = 0.3 F ǫ

t,k((1, 1), (2, 1)) + 0.5 F ǫ
t,k((1, 1), (2, 2))

+ 0.15 F ǫ
t,k((1, 2), (2, 1)) + 0.05 F ǫ

t,k((1, 2), (2, 2)). (5.37)

5.4.4 Methods for combining error distributions

In the above Paragraph, we have developed a fuzzy inference model hf that provides
conditional distribution functions of prediction errors. Given a specific forecast condition
ct,k, it returns the distribution F ǫ,∗

t,k of prediction errors ǫt+k/t as a combination of several
distributions, corresponding to different subsets of the forecast conditions.

Combining probability distributions is not a trivial task. Perhaps the area which is
the most concerned with the probability-combination problem is the area of probabilistic
risk analysis and decision science. It is often demanded to a panel of experts to provide
their judgment on a particular event in the form of probability distributions. A decision
maker has then to assimilate the various experts’ judgments, which may be converging
or conflicting. Hence, the corresponding probability distributions can have significantly
different shapes, and, in a general manner, they cannot be seen as Gaussian or even sym-
metric. The assimilation procedure followed by the decision maker consists in summa-
rizing the various experts’ opinion in a single combined probability distribution. In the last
decades, several methods have been developed for that purpose, either of the mathemat-
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ical or of the behavioral types. These methods are reviewed by Clemen and Winkler in
[17]. In the following, we describe two alternative approaches for combining probability
distributions: the linear opinion pool and adapted resampling.

The linear opinion pool

An appealing approach to the aggregation of probability distributions is the linear opinion

pool, which consists in saying that a combined distribution is the weighted average of
the individual probability distributions, the weights being non-negative and summed to
one [88]. One notices then that this is exactly what is given by the fuzzy logic inference
model described by Equation (5.36): the probability distribution of errors is given as
the weighted average of probability distributions for various forecast condition subsets.
Genest and McConway [30] discussed the interpretation of the weights to be assigned
to individual probability distributions. While it appears obvious that they relate to the
confidence one may have in such or such distribution to give more information on the
true effect, it is not evident how they should be calculated. In our case, the weights are
derived from the fuzzy-inference model, which, for a given forecast condition ĉt,k, tells to
what extent we expect the error distribution for each subsets of C to represent the actual
error distribution. Moreover, we assume that by considering non-overlapping subsets of
forecast conditions the related error distributions F ǫ

t,k(η(i)) (i = 1 . . . ,Ns) can provide
independent and relevant information on the true distribution.

In Paragraph 5.4.1 it was explained that an error distribution function could be ap-
proximated by its related empirical distribution function that puts an equal probability
to every item of a sample of past errors. Straightforwardly, we approximate here each
F ǫ

t,k(η(i)) by the related F̂ ǫ
t,k(η(i)) (i = 1 . . . ,Ns). Consequently, an estimate of the distri-

bution F ǫ,∗
t,k follows from Equation (5.36):

F̂ ǫ,∗
t,k (ct,k) =

Ns
∑

i=1

wi(ct,k).F̂
ǫ
t,k(η(i)). (5.38)

By gathering all the error sample St,k(η(i)) (i = 1 . . . ,Ns) available at time t and for
horizon k, we define S∗

t,k such that

S∗
t,k = St,k(η(1)) ∪ . . . ∪ St,k(η(Ns)). (5.39)

Therefore, given that the size of the error sample St,k(η(i)) (i = 1 . . . ,Ns) is set to n, S∗
t,k is

composed by n.Ns elements. An estimate of the distribution F ǫ,∗
t,k is given by the discrete

distribution that puts a probability wj = wi(ct,k)/n to every element ǫj of S∗
t,k that is

originally an element of St,k(η(i)):

F̂ ǫ,∗
t,k (ct,k) → {ǫj ∈ S∗

t,k, P(ǫj | ǫj ∈ S∗
t,k ∩ St,k(η(i))) = wj = wi(ct,k)/n}. (5.40)

As in the previous developments, the predictive distribution of wind generation is
constructed by associating the estimate of the distribution of prediction errors to the point
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forecast itself:

F̂ p,∗
t,k (ct,k) → {p̂t+k/t + ǫj, P(ǫj | ǫj ∈ S∗

t,k ∩ St,k(η(i))) = wj = wi(ct,k)/n}. (5.41)

Note that F̂ p,∗
t,k is now a continuous function of forecast conditions.

The cumulative distribution function Ĝp,∗
t,k related to F̂ p,∗

t,k has a slightly different form
than that of Equation (5.14), since the items of S∗

t,k do not have the same probabilities:

Ĝp,∗
t,k (ǫ) =

n.Ns
∑

j=0

wj .1ǫj<ǫ, (5.42)

where 1ǫj<ǫ takes the value 1 if ǫj < ǫ and 0 otherwise.

However, Ĝp,∗
t,k can be used similarly for estimating the lower and upper bounds of

the central prediction interval Î
(α)
t+k/t with nominal coverage rate (1 − α) by picking the

quantiles with proportion respectively (α/2) and (1 − α/2) of the predictive distribution
F̂ p,∗

t+k/t:

L̂
(α)
t+k/t = p̂t+k/t +

(

Ĝp,∗
t,k

)−1
(α/2), (5.43)

Û
(α)
t+k/t = p̂t+k/t +

(

Ĝp,∗
t,k

)−1
(1 − α/2). (5.44)

The adapted resampling method

The aim of methods like resampling (or bootstrapping, following the terminology of its
inventor Efron [25]) is to have a better idea of a population distribution parameter (e.g.
its mean or standard deviation) by going through a representative sample a high number
of times. This manipulation of the representative sample can serve to associate a mea-
sure of accuracy to the estimate of this population parameter. Actually, bootstrapping
has also been considered in the forecasting literature for estimating prediction intervals
associated to point forecasts (see Clements and Taylor [19], Grigoletto [36], or Reeves [82]
among others). Such a method has the advantage of being non-parametric, but it needs
to have access to the analytic model. This is not conceivable here, since the approach we
aim at developing assumes that the point prediction method is a kind of black-box, and
thus that we do not have access to the underlying model. Resampling is used here as
an alternative to the linear opinion pool approach for estimating quantiles of combined
probability distributions.

Write S = {ǫj}j=1,...,n a random sample from a probability distribution F . The obser-
vations ǫj (j = 1, . . . , n) are assumed to be i.i.d. (independent and identically distributed)
F . Following Efron’s terminology, the plug-in estimate of a parameter θ = h(F ) is defined
to be θ̂ = h(F̂ ). This means that we estimate the true parameter of F by applying the
same function to the empirical distribution function F̂ . This is what we have done in
Equations (5.16) and (5.17) for estimating the lower and upper bounds of the prediction
intervals. The elements of S are used for setting up an estimate Ĝ of the cumulative
distribution function associated to F .
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Denote by X = {xj}j=1,...,n a random sample that is i.i.d. U [0, 1]. The theory of prob-
abilities tells us that the sample G−1(X) = {G−1(xj)}j=1,...,n is i.i.d. F . Then, the idea
of resampling states that since Ĝ is an estimate of the true cumulative distribution as-
sociated to F , one can use it for drawing alternative samples that would lead to other
empirical distribution functions of the true distribution F . In practice, this alternative
sample S(b) (b = 1, . . . , B) is called a bootstrap sample and is obtained by picking randomly

and with replacement n values out of the original sample S. θ̂(b) is a bootstrap replication of
the θ statistic. Since all the bootstrap replications are potential estimates of the true pa-
rameter θ, one can consider them for calculating the bias or standard deviation associated
to the original estimate θ̂, or even confidence intervals.

Here, we propose to apply the idea of resampling for estimating a given parameter
θ of a combined probability distribution, by having a slightly different interpretation of
the combination given by the fuzzy inference model (5.36) than that of the linear opinion
pool. Remember that the fuzzy inference model gives a weight to each of the Ns dis-
tributions F ǫ

t,k(η(i)). The distributions F ǫ
t,k(η(i)) can be approximated by the empirical

distributions F̂ ǫ
t,k(η(i)). The linear opinion pool approach states that these weights can

be seen as probabilities and that one can construct a combined distribution by associ-
ating these probabilities to each sample. The difference we introduce here is that these
weights wi (i = 1, . . . , Ns) are to be used for defining the share of each of the represen-
tative samples of errors St,k(η(i)) for defining a representative sample drawn from the
combined distribution. We will use that interpretation for creating B bootstrap sample
S

(b)
t,k and compute a bootstrap replication θ̂(b) for each of them. Given n the size of the

error samples, a bootstrap sample S
(b)
t,k (also of size n) is constructed as following:

S
(b)
t,k = {S

(b)
t,k (η(i))}i=1,...,Ns , (5.45)

such that

S
(b)
t,k (η(i)) = {ǫj | ǫj ∈ St,k(η(i))}j=1,...,wi.n, i = 1, . . . ,Ns, (5.46)

where the items of S
(b)
t,k (η(i)) are picked randomly and with replacement from St,k(η(i)).

The parameters of interest are the quantiles of the combined probability distribution
F̂ ǫ

t,k. Therefore, write Ĝ
ǫ,(b)
t,k the cumulative distribution function associated to the empiri-

cal distribution function F̂
ǫ,(b)
t,k (following the definition of Equation (5.14)). The bootstrap

replications of the lower and upper bounds of the interval forecast Î
(α)
t+k/t with nominal

coverage rate (1 − α) are given by:

L̂
(α)(b)
t+k/t = p̂t+k/t +

(

Ĝ
ǫ,(b)
t,k

)−1
(α/2), (5.47)

Û
(α)(b)
t+k/t = p̂t+k/t +

(

Ĝ
ǫ,(b)
t,k

)−1
(1 − α/2). (5.48)

Finally, we approximate the bootstrap expectation by taking the mean of all the boot-
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strap replications, in order to obtain an estimate of the interval limits:

L̂
(α)
t+k/t =

1

B

B
∑

b=1

L̂
(α)(b)
t+k/t , (5.49)

Û
(α)
t+k/t

=
1

B

B
∑

b=1

Û
(α)(b)
t+k/t

. (5.50)

Note that by constituting these B bootstrap samples, we actually use all the informa-
tion included in the individual samples by drawing alternatives scenarios. Also, while
Efron and Tibshirani (see [26], pp. 124-126) explain that the bootstrap expectation serves
for calculating the bias associated to the original estimate of a distribution parameter
from a single sample, it has a completely different meaning here, since we apply that
form of resampling for a multi-sample problem. In the remaining of the document, this
approach is referred to as adapted resampling owing to the similarities with the original
resampling approach.

5.5 Application to the wind power forecasting problem

In this Section, we detail how the previously introduced methods can be straightfor-
wardly applied to the specific case of the wind power forecasting problem, by describing
a particular configuration that accounts for both the nonlinearity related to the level of
forecast power and the one related to the level of forecast wind speed (owing to the cut-
off risk). Therefore, following the notations used in the previous Section, let us consider
two influential variables (L = 2):

v1
t,k = p̂t+k/t, v1

t,k ∈ V1, (5.51)

v2
t,k = ût+k/t, v2

t,k ∈ V2. (5.52)

The forecast condition ct,k at time t, for lead time t + k, is then given by the pair
consisting of the forecast wind speed and predicted power values

ct,k = {v1
t,k, v

2
t,k} = {p̂t+k/t, ût+k/t}, ct,k ∈ C = V1 × V2. (5.53)

To account first for the power curve effects, the set V1 of possible power values is divided
into three subsets (J1 = 3), corresponding to the power ranges ‘low’ (V 1

1 ), ‘medium’ (V 2
1 )

and ‘high’ (V 3
1 ):

V1 = V 1
1 ∪ V 2

1 ∪ V 3
1 . (5.54)

In parallel, V2 is divided into two subsets (J2 = 2), corresponding to the range of forecast
wind speed values for which a cut-off event is not expected (V 1

2 ), and to the range of
values for which a cut-off is probable (V 1

2 ):

V2 = V 2
2 ∪ V 2

2 . (5.55)
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This constitutes six different subsets of the forecast conditions (Ns = 6):

C1 = V 1
1 × V 1

2 , (5.56)

C2 = V 2
1 × V 1

2 , (5.57)

C3 = V 3
1 × V 1

2 , (5.58)

C4 = V 1
1 × V 2

2 , (5.59)

C5 = V 2
2 × V 2

2 , (5.60)

C6 = V 3
3 × V 2

2 . (5.61)

However, if considering a theoretical power curve such as the one depicted in Figure 5.2
it appears unlikely that a cut-off event occurs when predicted power values are in the
‘low’ or ‘medium’ ranges, and that the possibility of a cut-off event is only dictated by
the forecast wind speed, the three subsets formed with V 2

2 are grouped to form only one:

C4+ = C4 ∪ C5 ∪ C6. (5.62)

Figure 5.2: Mapping of the forecast uncertainty introduced by the power curve. The range of possible
predicted power values is divided into three ranges (‘low’, ‘medium’ and ‘high’), to which are associated
three trapezoidal fuzzy sets, in order to account for the nonlinearity introduced by the power variable.
Similarly, the range of possible forecast wind speed values is divided into two ranges (‘no cut-off risk’ and
‘cut-off risk’), owing to the nonlinearity introduced by the cut-off, to which are associated two trapezoidal
fuzzy sets. This yields four zones of the power curve related to different characteristics of power prediction
error distributions.
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Denote by S1
t,k, S2

t,k, S3
t,k and S4+

t,k the samples (of size n) of prediction errors corre-
sponding to the four subsets of forecast conditions introduced above. At a given time t,
each of these samples contain the last n k-step ahead prediction errors made by the point
prediction approach in the forecast conditions defined respectively by C1, C2, C3 and C4+.

To every subsets of V1 and V2 are associated trapezoidal fuzzy sets. Figure 5.2 il-
lustrates this mapping of a theoretical power curve into various zones corresponding
to different characteristics of the prediction error distributions. Then, denote by Ai

C the
two-dimensional fuzzy sets related to the subset of forecast conditions Ci, i = 1, . . . , 4+.
Each two-dimensional fuzzy set Ai

C is characterized by its membership function m(., i),
i = 1, . . . , 4+. The analytical form of these membership functions is not given here.

The fuzzy rule base inference model is composed by four fuzzy rules, which can be
expressed as:

“ IF ct,k ∈ D(A1
C) THEN ǫt+k/t ∼ F ǫ,1

t,k ", (5.63)

“ IF ct,k ∈ D(A2
C) THEN ǫt+k/t ∼ F ǫ,2

t,k ", (5.64)

“ IF ct,k ∈ D(A3
C) THEN ǫt+k/t ∼ F ǫ,3

t,k ", (5.65)

“ IF ct,k ∈ D(A4+
C ) THEN ǫt+k/t ∼ F ǫ,4+

t,k ", (5.66)

where F ǫ,i
t,k is the empirical probability distribution that puts probability 1/n on each el-

ement of Si
t,k, i = 1, . . . , 4+. For instance, the first rule (given by (5.63)) states that if

predicted power p̂t+k/t is in the ‘low’ range and forecast wind speed ût+k/t is in the ‘no
cut-off’ range, prediction errors et+k/t for that look-ahead time are distributed F ǫ,i

t,k .

The fuzzy inference model, which gives the conditional distributions of prediction
errors as a function of the forecasts conditions, can thus be written as:

hf : ct,k → ǫt+k/t ∼ F ǫ,∗
t,k =

4+
∑

i=1

wi(ct,k).F
ǫ,i
t,k , (5.67)

where the weights wi of each of the fuzzy rules are calculated as following:

wi(ct,k) =
m(ct,k, i)

∑4+
i=1 m(ct,k, i)

, i = 1, . . . , 4 + . (5.68)

Let us now imagine an operational wind power forecasting application in which point
predictions are produced from a state-of-the-art method (say one of the methods consid-
ered in the Anemos project). Denote by kmax the forecast length. The size n of the error
samples is defined by the end-user, as well as the nominal coverage rate (1 − α) of the
interval forecasts. The Algorithm 5.1 describes the steps for the estimation of prediction
intervals of wind generation at prediction time t. In a first stage, one retrieves the power
measure pt at time t and the series of predictions p̂t+k/t k = 1, . . . , kmax produced from the
point forecasting method. The power measure is used for calculating the errors et/t−k re-
lated to the predictions p̂t/t−k issued in the past for time t. It is thus necessary to store the
series of predictions for a time period equal to the forecast length of the considered point
prediction method. This is also valid for the case of the considered influential variables.
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Forecast conditions ĉt−k,k related to et/t−k are determined in order to decide to which
error samples the prediction errors êt/t−k belong to. These samples are then updated by
discarding the oldest error value and by adding the new one as it becomes available5 .
This makes the method adaptive, since it always considers the most recent information
on the process. It can accommodate temporal modifications of the characteristics of pre-
diction error distributions, owing to the season of the year, changes in the wind farm
environment, etc. The fuzzy inference model (Equation (5.67)) is used independently for
each prediction horizon, for determining how to estimate conditional prediction error

distributions F ǫ,∗
t,k given the forecast conditions ct,k . The prediction intervals Î

(α)

t+k/k with
nominal coverage rate (1 − α) are finally estimated by applying either the linear opinion
pool or the resampling approach for the combination of probability distributions given
by the fuzzy inference model.

Algorithm 5.1: The necessary steps at time t for producing the empirical and distribution-free prediction

intervals of wind generation

step 1. Retrieve the power measure pt for time t
step 2. Retrieve and store the power predictions p̂t+k/t, k > 0, provided by

a point prediction method, as well as related influential variables
values

step 3. Calculate the prediction errors et/t−k related the power predictions
p̂t/t−k , k > 0, issued at time t − k for time t

step 4. Update the relevant error samples given the forecast condition ct−k,k

related to the prediction error et/t−k

step 5. For each look-ahead time k, use the fuzzy inference model given by
Equation (5.67) to determine the distribution of prediction errors F ǫ

t,k

given the forecast conditions ct,k

step 6. For each look-ahead time k, apply either the linear opinion pool or
the adapted resampling approach for estimating the bounds of the

prediction intervals of wind generation Î
(α)
t+k/t

The proposed methods for the estimation of prediction intervals of wind generation
has originally been developed for online application. In Appendix B, we detail the char-
acteristics of the module we have implemented and which is integrated in the ANEMOS
prediction platform.

5.6 Discussion on operational aspects

What type of prediction intervals?

The above methods permit to estimate predictive distributions of wind generation. We

5At the beginning of the application, error samples are empty. But, as new predictions are provided and
related power measures made available, these samples are filled and updated. Even if the number of items
in each sample has not reached n, it is possible to apply the previously described methods by modifying the
necessary steps, i.e. by considering the number of available errors instead of the required n elements. After
a certain time of operation (a minimum of n.Ns forecasting steps), all the samples attain their defined size.
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proposed to summarize the uncertainty information by quoting prediction intervals, which
consist of two particular quantiles of these distributions. Actually, even by assigning a
certain nominal coverage rate, the resulting intervals with that pre-assigned probability
can be intervals around the mean, the median, or intervals with the shortest length for
instance. It was already explained in Section 5.2 that it was more appropriate to provide
central prediction intervals than intervals around the distribution mean, since they cor-
respond to quantiles with known proportions. An alternative described by Hyndman
[44] is to provide highest-density interval forecasts, which are defined as intervals with
the shortest length given that any point inside the intervals has a probability density at
least as large as every point outside the intervals. They can be of practical interest when
working with non-normal and multimodal distributions. But, again, the endpoints of
these intervals do not correspond to quantiles with known proportions. For instance, if
focusing on the lower bound of intervals with a 80% degree of confidence, it may corre-
spond to a quantile with proportion 0.05 for a given forecast and then to a quantile with
proportion 0.15 for the following one. Thus, the risk of the true effect lying below that
lower bound will change for every prediction. This does not appear appropriate from an
operational point of view. Therefore, we will focus on central prediction intervals only.

Choice of an optimal coverage rate

An important question concerning the intervals arises: how to choose an optimal nomi-
nal coverage rate? When this pre-assigned probability is higher than 90%, intervals can
be ‘embarrassingly’ wide, because they will contain extreme prediction errors (or even
outliers). Working with high-coverage intervals means that we are aiming at modeling
the very tails of the error distributions. Thus, the robustness of the uncertainty estima-
tion methods becomes a critical aspect. However, if one defines lower pre-assigned prob-
abilities (50% for instance), intervals will be much more narrow and more robust with
respect to extreme prediction errors. But, this would translate to future observations be-
ing equally likely to lie inside or outside these bounds. In both cases, prediction intervals
appear hard to handle and that is why an intermediate degree of confidence (75-85%)
seems to be a good compromise [15].

Marginal or simultaneous prediction intervals

Moreover, the fact that prediction intervals are designed for multi-step ahead forecasts
imposes to define what is the real required degree of confidence. As a matter of fact,
there is a difference between a nominal coverage rate defined for each predicted value
and a nominal coverage rate that would be defined over the whole forecast length. For
instance, if a 85% degree of confidence is required for one-day ahead hourly predictions,
the former corresponds to “each of the 24 intervals will contain the true value 85% of
the times" (referred to as marginal intervals in the forecasting literature, though the term
pointwise may be more appropriate), while the latter translates to “the 24 intervals will
contain all the 24 true values 85% of the times" (referred to as simultaneous intervals in
the literature). The second way of reasoning is obviously much more restrictive and
seems less applicable in our case. As we explained in previous Sections, the method
for interval estimation is applied separately for every look-ahead time. Therefore, the
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observed confidence will be verified accordingly. For a more thorough discussion about
multi-step ahead prediction intervals, we refer to Chan et al. [14] and Ravishankar et al.
[81].

Multiple intervals for providing predictive distributions of wind generation

Instead of focusing on a particular nominal coverage rate, it seems that producing a num-
ber of prediction intervals for a range of nominal coverage rates would be a better solu-
tion. This would allow one to build the whole probability distribution of expected wind
generation for each look-ahead time. As explained in Section 5.4, this may involve the
development of several models e.g. if considering quantile regression methods, but with
the methodology described above, it is not more computationally expensive to estimate
one or thirty quantiles. Wind power forecast users may request not only a single in-
terval forecast but also predictive distributions of future wind generation. Indeed, the
decision-making methods appearing in the literature need a complete approximation of
the density function for providing an optimal management [23] or trading strategy [5, 28].
Therefore, we will consider that when possible, several interval forecasts with various
degrees of confidence should be provided.

5.7 A non-parametric framework for the evaluation of predic-

tion intervals

Evaluating probabilistic forecasts (either density or interval forecasts) is more compli-
cated than evaluating deterministic ones. When it is easy to say that a point forecast is
false because the deviation between the predicted and the real values is of practical mag-
nitude, an individual probabilistic forecast cannot be deemed as incorrect [65]. Indeed,
when an interval forecast states there is a 90% confidence that expected power generation
(for a given horizon) will be between 100 and 250kW and that the actual outcome equals
90kW, how to tell if this case should be part or not of the 10% of cases for which intervals
miss?

In this Section, our aim is to describe what the required properties of interval fore-
casts are, and how they can be evaluated in terms of their statistical performance. For
that purpose, we present relevant skill scores and diagrams that were introduced in the
statistical and meteorological literature. We consider here a non-parametric framework
that is suitable for evaluating either intervals or series of quantiles. Moreover, in the fol-
lowing, all criteria are evaluated as a function of the look-ahead time, or as an average
over the forecast length. If the evaluation set is large enough, it would also be appro-
priate to assess the skill of probabilistic forecasting methods as a function of some other
parameters (e.g. level of power).

5.7.1 Required properties for interval forecasts

Prediction intervals are associated to a probability, which is their nominal coverage rate.
The first requirement for interval forecasts is that their empirical coverage should be close
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to the nominal one. Actually, if considering infinite series of interval forecasts, that em-
pirical coverage should exactly equal the pre-assigned probability. That first property is
referred to as reliability or calibration in the literature [2, 18, 65].

Besides this first requirement, it is necessary that prediction intervals provide a situation-
dependent assessment of the forecast uncertainty. Their size should then vary depending
on various external conditions. For the example of wind prediction, it is intuitively ex-
pected that prediction intervals (for a given nominal coverage rate) should not have the
same size when predicted wind speed equals zero and when it is near cut-off speed. The
most simple type of intervals is constant-size intervals (e.g. produced from climatology).
Advanced methods for their estimation are expected to produce variable-size intervals.
This property is commonly named sharpness or resolution of the intervals [2, 65]. Note that
here, we will introduce a nuance between sharpness and resolution: the former will relate
to the average size of intervals while the latter will be associated to their size variability.

Actually, the traditional view of interval forecast evaluation, which mainly comes
from the econometric forecasting community, is based on the testing of correct condi-
tional coverage. This means intervals have to be unconditionally reliable, and indepen-
dent (see for instance [16], or [18] ch. 3)). However, in the case of wind power forecasting,
we know there exists a correlation among forecasting errors (at least for short time-lags)
[70]. Thus, we do not expect prediction intervals to be independent. Then, it appears
preferable to develop an evaluation framework that is based on an alternative paradigm.
We propose to consider reliability as a primary requirement and then sharpness and res-
olution as an added value. It should be noted here that reliability can be increased by
using some re-calibration methods (e.g. conditional parametric models [74] or smoothed
bootstrap [38]), while sharpness/resolution cannot be enhanced with post-processing
procedures. This second aspect is the inherent (and invariant) ability of a probabilistic
forecasting method to distinctly resolve future events [90].

5.7.2 Methods for the evaluation of prediction intervals

The following methods focus on the evaluation of predictive quantiles or prediction in-
tervals of wind generation in a hierarchical manner: reliability has to be assessed first,
followed by a study of sharpness and then resolution. A skill score is introduced in a
second stage, which allows one to directly assess the overall quality of these predictions.

The indicator variable

Before going further with the evaluation of interval forecasts, it is necessary to introduce
the indicator variable I

(α)
t,k (following the definition by Christoffersen [16]), which is de-

fined for a prediction made at time t and for the horizon k as follows

I
(α)
t,k = 1

pt+k∈Î
(α)
t+k/t

=

{

1, if pt+k ∈ [L̂
(α)
t+k/t, Û

(α)
t+k/t]

0, otherwise
. (5.69)

This indicator variable tells if the actual outcome pt+k at time t + k lies (“hit”) or not
(“miss”) in the prediction interval estimated for that lead time. We would like to mention
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that this definition of the indicator variable can be easily adapted when working with
quantiles of a probabilistic distribution. Indeed, the value of pt+k lying or not inside the
interval is replaced by the test of pt+k being below or above the estimated quantile r̂

(α)
t+k/t.

Then, I(α)
t,k can alternatively be defined with

I
(α)
t,k = 1

pt+k≤r̂
(α)
t+k/t

=

{

1, if pt+k ≤ r̂
(α)
t+k/t

0, otherwise
. (5.70)

Let then define as n
(α)
k,1 the sum of hits and n

(α)
k,0 the sum of misses (for a given horizon

k) over the NT realizations:

n
(α)
k,1 = #{I(α)

t,k = 1} =

NT
∑

t=1

I
(α)
t,k , (5.71)

n
(α)
k,0 = #{I(α)

t,k = 0} = NT − n
(α)
k,1 . (5.72)

It is by studying the series of indicator variable {I
(α)
t,k , t = 1, . . . ,NT } over the test set

that we will assess the reliability and overall skill of interval forecasts.

Reliability

The easiest way to check the reliability of interval forecasts is to compare their empirical
coverage to the nominal one (i.e. the required probability (1-α)). An estimation â

(α)
k of

the actual coverage a
(α)
k , for a given horizon k, is obtained by calculating the mean of the

{I
(α)
t,k }t=1,...,NT

time-series over the test set:

â
(α)
k =

1

NT

NT
∑

t=1

I
(α)
t,k =

n
(α)
k,1

n
(α)
k,0 + n

(α)
k,1

. (5.73)

This standard measure for evaluating prediction intervals’ reliability was first pro-
posed by Ballie et al. [3] and by McNees [66]. This is the idea used in reliability diagrams

which give the empirical coverage versus the nominal coverage for various nominal cov-
erage rates. The closer to the diagonal the better. They can alternatively be depicted as
the deviation from the ‘perfect reliability’ case for which empirical coverage would equal
the nominal one (calculated as the difference between these two quantities). This idea is
similar to the use of Probability Integral Transform histograms as proposed by Gneiting
et al. [33], except that reliability diagrams directly provide that additional information
about the magnitude of the deviations from the ‘perfect reliability’ case.

Reliability diagrams allow one to summarize the calibration assessment of several
quantiles or intervals and thus to see at one glance if a given method tends to systemat-
ically underestimate (or overestimate) the uncertainty. Figure 5.3 shows an example of a
reliability diagram for the evaluation of a given estimation method of wind power pre-
dictive distributions. Deviations from the ‘perfect reliability’ case are given as a function
of the quantile nominal proportions, as an average over the forecast length. Here, one
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notices a rather good calibration of the method since deviations are lower than 2%. How-
ever, the fact that quantiles are slightly overestimated for proportions lower than 0.5 and
slightly underestimated for proportions above that value indicates that corresponding
predictive distributions are a bit too narrow.
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Figure 5.3: Example of a reliability diagram depicting deviations as a function of the nominal coverage
rate, for the reliability evaluation of a method providing probabilistic forecasts of wind generation.

Using that kind of comparison between the nominal and empirical coverage intro-
duces subjectivity in the evaluation: the decision of whether the intervals have correct
coverage or not is left to the analyst. This is why a more objective framework based
on hypothesis testing has been introduced in the forecasting literature (mainly in econo-
metric forecasting). For instance, Christoffersen [16] proposed a likelihood ratio χ2-test
for evaluating the unconditional coverage of interval forecasts of economic variables, ac-
companied by another test of independence. In the area of wind generation forecasting,
Bremnes [10] recently used a Pearson χ2-test for evaluating the reliability of the quan-
tiles produced from a local quantile regression approach. However, χ2-tests rely on an
independence assumption regarding the sample data. Owing to the correlation of wind
power forecasting errors, it is expected that series of interval hits and misses can come
clustered together in a time-dependent fashion. This actually means that independence
of the indicator variable sequence cannot be assumed in our case (except if independence
is proven in a prior analysis). In such cases, serial correlation invalidates the significance
level of hypothesis tests. In general, it is known that statistical hypothesis tests cannot
be directly applied for assessing the reliability of probabilistic forecasts due to the either

93



Methods for Estimating the Uncertainty of Wind Power Forecasts

serial or spatial correlation structures [39].

Sharpness and Resolution

When dealing with sharpness or resolution, focus is given to the size of prediction in-
tervals, or in a more general manner to the shape of predictive distributions. In the me-
teorological literature, the sharpness of probabilistic forecasts correspond to the ability
of these forecasts to deviate from the climatological mean probabilities, whereas reso-
lution stands for the ability of providing different conditional probability distributions
q(p|p̂) depending on the level of the predictand. For probabilistic forecasts with perfect
reliability, these two notions are equivalent [90]. Here, we introduce a slightly different
view of these two aspects. Given that the reliability of probabilistic forecasts is assessed
in a prior analysis, we then propose to study the evolution of the shape of probabilistic
distributions. Distributions that are narrower should be rewarded, since it will increase
their value in a decision-making context. This is what we will regard as the sharpness of
probabilistic forecasts. And, if rival probabilistic prediction methods produce distribu-
tions with a similar sharpness, then distributions whose shape exhibits larger variations
over the evaluation period, hence showing a better ability for discriminating among fu-
ture events, should be preferred. This is in line with the resolution aspect defined in the
meteorological literature.

Define

δ
(α)
t,k = Û

(α)
t+k/t − L̂

(α)
t+k/t = r̂

(1−α/2)
t+k/t − r̂

(α/2)
t+k/t (5.74)

the size of the central interval forecast (with pre-assigned probability (1 − α)) estimated
at time t for lead time t + k.

If two uncertainty estimation methods provide intervals at an acceptable level of reli-
ability, we explained that it is the method that yields the narrowest intervals that is to be
preferred. Here, the sharpness aspect is evaluated by calculating the average size δ̄

(α)
k of

the prediction intervals for a given horizon k:

δ̄
(α)
k =

1

NT

NT
∑

t=1

δ
(α)
t,k =

1

NT

NT
∑

t=1

(

r̂
(1−α/2)
t+k/t − r̂

(α/2)
t+k/t

)

. (5.75)

Both Bremnes [10] and Nielsen et al. [73] used such a measure for evaluating the
sharpness of the their probabilistic forecasts as a function of the horizon. When focusing
on the distance between the quantiles for proportions 0.25 and 0.75 (i.e. the quartiles),
this measure is commonly known as the inter-quartile range. However, since in a non-
parametric framework probabilistic forecasts may consist in a set of prediction intervals,
it would be interesting not to focus only on these two particular quantiles but also to
look at the size of intervals corresponding to the very central and to the tail parts of the
predictive distributions — say δ̄

(0.8)
k and δ̄

(0.2)
k for instance, which are the average size of

the respectively 20%- and 80%-confidence central intervals.

In parallel, the resolution concept stands for the ability of providing a situation-
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dependent assessment of the uncertainty. If two approaches have similar sharpness, then
a higher resolution translates to a higher quality of related interval forecasts. It is not
possible to directly verify that property, though we can study the variation in size of the
intervals by using an appropriate summary statistic such as the standard deviation σ

(α)
k

of the interval size (for a given horizon k and nominal coverage rate (1 − α)), where

σ
(α)
k =

[

1

NT − 1

NT
∑

t=1

(

δ
(α)
t,k − δ̄

(α)
k

)2
]

1
2

. (5.76)

Because of the nonlinear and conditionally heteroskedastic nature of the wind gener-
ation process, the forecast uncertainty is highly variable and it is thus expected that the
interval size also greatly varies.

Finally, δ-diagrams and σ-diagrams, which give respectively δ̄
(α)
k and σ

(α)
k as a func-

tion of the nominal coverage rate for a given look-ahead time k (or over the forecast
length), permit to better visualize the shape (and shape variations) of predictive distribu-
tions. We will underline the interest of such diagnostic tools in the following Section.

Defining a unique skill score

As for point-forecast verification, it is often demanded that a unique skill score would
give the whole information on a given method performance. Such a measure would
be given by scoring rules that associate a single numerical value Sc(q̂, p) to a predictive
distribution q̂ if the event p materializes. Then, we can define as

Sc(q̂′, q̂) =

∫

Sc(q̂′, p)q̂(p)dp (5.77)

the score under q̂ when the predictive distribution is q̂′.

A scoring rule should reward a forecaster that expresses his true beliefs. It is said
to be proper if it does so. One remembers here that Murphy [68] referred to that aspect
as the forecast consistency and stated that a forecast (probabilistic or not) should corre-
spond to the forecaster’s judgment. If we assume that a forecaster wishes to maximize
his skill score over an evaluation set, then a scoring rule is said to be proper if for any two
predictive distributions q̂ and q̂′ we have

Sc(q̂′, q̂) ≤ Sc(q̂, q̂), ∀q̂, q̂′. (5.78)

The scoring rule Sc is said to be strictly proper if Equation (5.78) holds with equality if
and only if q̂′ = q̂. Hence, if q̂ corresponds to the forecaster’s judgment, it is by quoting
this particular predictive distribution that he will maximize his skill score.

If we consider that a predictive distribution q̂ is characterized by its quantiles r̂ =

{r̂1, r̂2, . . . , r̂l} at levels α1, α2, . . . , αl, Gneiting et Raftery [34] recently showed that any
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scoring rule of the form

Sc(r̂, p) =
l

∑

i=1

(

αisi(ri) + (si(p) − si(ri))I
(αi) + f(p)

)

, (5.79)

with I(αi) the indicator variable (for the quantile with proportion αi) introduced above, si

non-decreasing functions and f arbitrary, was proper for evaluating this set of quantiles.
Here Sc(r̂, p) is a positively rewarding score: a higher score value stands for an higher
skill. The specific case of central prediction intervals corresponds to the case where only
two quantiles are quoted (cf. Equations (5.4) and (5.5)). Note that for a unique quantile,
the scoring rule given by Equation (5.79) generalizes the loss functions considered in
quantile regression [73] and local quantile regression [10].

Actually, Gneiting and Raftery [34] also noticed that for the specific case of central
prediction intervals with nominal coverage rate (1 − α), by putting α1 = α/2 and α2 =

1 − α/2, si(p) = 4p, (i = 1, 2), and f(p) = −2p, one retrieves an interval score that has
already been proposed by Winkler [93]. Such an interval score Sc(α)

t,k used for evaluating

the interval Î
(α)
t+k/t has the following form:

Sc(α)
t,k =















−2αδ
(α)
t,k − 4(L̂

(α)
t+k/t − pt+k), if pt+k < L̂

(α)
t+k/t

−2αδ
(α)
t,k , if pt+k ∈ Î

(α)
t+k/t

−2αδ
(α)
t,k − 4(pt+k − Û

(α)
t+k/t), if pt+k > Û

(α)
t+k/t

, (5.80)

where δ
(α)
t,k is the size of the interval forecast Î

(α)
t+k/t as defined in Equation (5.74).

This score is appealing since it considers the size of the intervals (by rewarding tight
intervals) and gives a penalty if the observation does not lie inside the estimated interval.
The score is calculated at each prediction time and then averaged over the test set in order
to obtain the final score value Sc(α)

k for every horizon k

Sc(α)
k =

1

NT

NT
∑

t=1

Sc(α)
t,k . (5.81)

Using a unique proper skill score allows one to compare the overall skill of rival ap-
proaches, since scoring rules such as the one given by Equation (5.79) encompass all the
aspects of probabilistic forecast evaluation. It can also be utilized as a criterion for opti-
mizing the parameters of a given quantile estimation method. However, a unique score
does not tell what are the contributions of reliability or sharpness/resolution to the skill
(or to the lack of skill)6. Though, if reliability is verified in a prior analysis, relying on a
skill score permits to carry out an assessment of all the remaining aspects, namely sharp-
ness and resolution.

6This has already been stated by Roulston et al. [83] when introducing the ‘ignorance score’, which de-
spites its many justifications and properties has no ability to tell why a given method is better than another.
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5.8 Results

The evaluation framework introduced in Section 5.7.2 is applied here for assessing the
quality of the prediction intervals produced from both the linear opinion pool and the
adapted resampling method. For that purpose, we have selected three statistical predic-
tion methods considered in the Anemos project, that are denoted by M1, M2 and M3, and
their application to the Tunø Knob and Klim case-studies. By selecting these methods
that provide predictions every hour, there are more available data for evaluating interval
forecasts. The Klim and Tunø Knob test cases consists of respectively 18943 and 3220 se-
ries of wind power point predictions and associated interval forecasts. In this Section, we
assess the skill of the proposed interval estimation methods by showing and comment-
ing on some selected results from the full verification procedure. Note that we do not
consider any benchmark intervals based on an assumption about the shape of error dis-
tributions. We have already demonstrated the superiority of the proposed distribution-
free approach against Box-Jenkins intervals [78] and also against intervals derived from
the assumption that predictive distributions of wind generation can be modeled with
β-distribution [79].

Regarding the mapping of the forecast uncertainty, since the available dataset only
prove very few occurrences of cut-off events, it has not appeared appropriate to consider
the nonlinearity introduced by the cut-off risk. The effects of the level of predicted power
on the uncertainty are significant. Though, we do no know what is the influence of me-
teorological variables e.g. wind direction on prediction error distributions. We assume
here that these effects can be neglected since there is no evidence in the literature of their
impact on forecast uncertainty. Therefore, the mapping of the forecast conditions only
concerns the range of possible predicted power values.

Figure 5.4 depicts an episode consisting in a set of wind power predictions provided
by M2, issued on the 28th March 2003 at 10:00, for the Tunø Knob wind farm. The related
power measures are also shown. Moreover, a set of interval forecasts produced from
the adapted resampling method is associated to the point predictions, in the form of a
fan chart. The nominal coverage rates for these intervals were set to 10, 20, . . ., 90%.
This illustrative example does not have any statistical value for assessing the quality of
the intervals, but serves instead to show some of the nice properties of the designed
approach.

When describing the uncertainty estimation methods, we explained that these meth-
ods were non-parametric (i.e. the intervals are estimated without assuming a specified
distribution), and that this would permit to produce asymmetric prediction intervals.
From the example of Figure 5.4, one clearly sees that interval forecasts are not symmet-
ric around the point predictions. Also, one verifies a comment we made in Section 5.2:
since intervals are central prediction intervals, they are centered around the median of
the predictive distributions of wind generation and hence do not necessarily cover the
point predictions themselves (which in turn are estimates of the mean of these distribu-
tions). Therefore, when the asymmetry of error distribution is more pronounced, for low
and high predicted power values for instance, the difference between the center of the
intervals and the point prediction is higher. This is clear here for horizons between 35-
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Figure 5.4: Example of wind power point predictions associated with a set of interval forecasts. The point
predictions are given by M2 and the central interval forecasts are estimated consequently with the adapted
resampling method. Nominal coverage rates range from 10 to 90%. These sets of predictions and intervals
were issued on the 28th March 2003 at 10:00, for the Tunø Knob wind farm.

and 45-hour ahead. Note that the developed methods for estimating interval forecasts
can be straightforwardly adapted if one wants to build prediction-centered intervals —
this is done by considering separately distributions of positive and negative prediction
errors.

Moreover, the effects of both the lead time and the level of predicted power can be
seen from the Figure. Prediction intervals are very tight for the very first horizons, owing
to the low level of predicted power and also because it is easier to predict for short-range
horizons with statistical methods. Then, they get rather large when predicted power is in
the medium-range: the forecast uncertainty is higher in such a case. Finally, they become
narrower for horizons between 37- and 45-hour ahead, since predicted power is again
at a low level. However, for the very last look-ahead times, one notices that intervals
for nominal coverage rates greater than 80% have high upper bounds. This reflects the
possibility of large negative prediction errors, even if such errors are unlikely.

5.8.1 Linear opinion pool vs. Adapted resampling

Two approaches for the combination of error distributions have been introduced, based
on the linear opinion pool and adapted resampling methods. While the first one is based
on the weighting of the probability distributions in a probabilistic sense, the second uses
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the weights from the fuzzy inference model (5.36) for defining the share of each sam-
ple in the multi-sample resampling scheme. Our first aim is to compare the intervals
resulting from these two approaches. For that purpose, we evaluate the quality of the in-
terval forecasts produced from the point predictions given by M1, M2 and M3 for the two
wind farms. In all the following evaluation exercises, the predictive distributions of wind
generation will consist in a set of interval forecasts with nominal coverage rates ranging
from 10 to 90%, with an increment of 10%. Regarding the set-up of both methods, the
mapping of the forecast uncertainty is done by dividing the range of possible predicted
power values into five zones, to which we associate triangular fuzzy sets. The size of the
error samples is set to 300. Finally, we consider the case of 50 bootstrap replications for
the adapted resampling approach.

Focus is given first to the reliability aspect, since we expect that the choice between
the two approaches for combining probability distributions will mainly have an effect on
the reliability of the resulting predictive distribution quantiles. Therefore, we estimate
the actual coverage of the predictive distributions, and summarize this information in
reliability diagrams that give the difference between the empirical and the nominal cov-
erage rates, for the various estimated quantiles. Figures 5.5 and 5.6 depict the results for
Tunø Knob and Klim respectively. These two diagrams are for the whole forecast length:
displayed values correspond the average deviations over all the prediction horizons.

Consider in a first stage Figure 5.5 for explaining how to read such reliability dia-
grams and what kind of conclusions can be derived from their study. The x-axis gives
the required probability, i.e. the nominal coverage rate of the predictive quantiles, and
the various curves display the deviation (in %) from the ‘perfect reliability’ situation for
which the empirical coverage of the quantiles would equal the nominal one. This ideal
situation is represented by the dash-dot straight line. Then, a +1%-deviation for the quan-
tile with nominal coverage rate 30% (for instance) actually tells that the empirical cover-
age estimated with Equation (5.73) is equal to 31%. Figures in the legend correspond to
the average absolute deviation from the ideal case, over the range of nominal coverage
rates (and also over the forecast length).

For the Tunø Knob case-study, the deviations from ‘perfect reliability’ are contained
in a ±3% envelope whatever the considered point prediction method or the interval es-
timation approach. The reliability of the intervals could be expected to be lower for low
and high nominal coverage rates since it is harder to model the very tails of error distri-
butions. This is not the case here. However, one notices a general trend, which is that
quantiles for proportions below 0.5 are overestimated while quantiles above the median
are underestimated. Prediction intervals are slightly too narrow on average. It should
be understood here that having too narrow intervals is more likely than having too large
intervals: methods for estimating future uncertainty usually rely on past experience of
a given model performance and therefore do not integrate the additional uncertainty of
predicting new data [15]. Average absolute deviations are between 0.86 and 1.23%, with
slightly better results obtained from the application of the linear opinion pool approach.
In a general manner, we conclude on an acceptable reliability of the probabilistic forecasts
produced by both methods.

The Klim test case consists in a longer evaluation period (almost 19.000 series of two-
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Figure 5.5: Reliability diagrams for Tunø Knob. Results are given for the three point prediction methods
and for the two implemented approaches (lop: linear opinion pool; ar: adapted resampling).
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Figure 5.6: Reliability diagrams for Klim. Results are given for the three point prediction methods and for
the two implemented approaches (lop: linear opinion pool; ar: adapted resampling).

100



ANEMOS Deliverable Report D3.1bis

days ahead forecasts) and can thus give more insight on the reliability of predictive dis-
tributions. In Figure 5.6, deviations from nominal coverage are in general lower than
the ones witnessed when studying Tunø Knob. Average absolute deviations range from
0.32 to 0.89% only. These deviations are significantly lower for intervals estimated with
the adapted resampling approach. There is a trend that the linear opinion pool quantiles
underestimate the true quantiles (cf. left part of the reliability diagrams). The difference
between the two approaches is less pronounced for quantiles with proportions higher
than 0.5. Even if the calibration of adapted-resampling quantiles appears better than the
one of linear-opinion-pool quantiles, we consider here also that both approaches yield
reliable interval forecasts.

The second stage of the evaluation of the predictive distributions is carried out by
using a scoring rule of the form of Equation (5.79) where the si functions are such that
si(p) = 4p, (i = 1, . . . , 18), and f(p) = −2p following Gneiting and Raftery [34], calcu-
lated as a function of the look-ahead time. The resulting score summarizes the skill of
the predictive distributions described by the 18 quantiles estimated from both interval
estimation methods. Given that we have accepted quantiles to be reliable (even if it is
only a subjective result), the positively-oriented score can tell which method (and also
which point prediction method used as input) leads to the ‘best’ predictive distributions.

Figure 5.7 gives the evolution of the skill score as a function of the horizon for Tunø
Knob. Figures in the legend correspond to the average skill score values over the forecast
length. The skill score steadily decreases as the look-ahead time augments. This meets
the general statement that it is harder to predict for lead times further in the future, which
was already discussed and illustrated for the case of point predictions of wind power in
[64]. Also, we see that the skill scores of predictive distributions generated from the linear
opinion pool and adapted resampling approaches are rather close: they actually coincide
when point predictions are provided by the M3 method, though there are significant dif-
ferences for the cases of M1 and M2. The average values shown in the legend tell that
adapted-resampling predictive distributions are better than the ones resulting from the
linear-opinion-pool combination approach.

The way the skill score evolves as a function of the look-ahead time for the Klim case-
study is shown in Figure 5.8. Similarly, the skill score values of predictive distributions
are rather close, with a slight advantage for the ones estimated with adapted resampling.
But, an interesting point is that the choice of a given point prediction method as input has
an influence on the quality of the resulting predictive distributions. Indeed, it appears
that considering M1 leads to better probabilistic forecasts for Tunø Knob (but not over
all the forecast length), whereas considering M2 is better for Klim. Note that since the
predictive distributions are actually estimations of the error distributions related to point
forecasts, a point prediction method with sharper error distributions will yield sharper
probabilistic forecasts. Though, this comment is of course only valid if the prediction
interval estimation approach has a real ability to reflect the error distribution associated
to a given point forecast.

To conclude on that comparison of the two approaches for the probabilistic distribu-
tion combination problem, we can say that predictive distributions estimated from the
adapted resampling approach prove to have a higher skill than the ones resulting from
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Figure 5.7: Skill score as a function of the horizon for Tunø Knob. Results are given for the three point pre-
diction methods and for the two implemented approaches (lop: linear opinion pool; ar: adapted resampling).
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the more classic linear opinion pool approach. On the case-study with the longer evalu-
ation period, the reliability of adapted resampling quantiles is significantly higher. Also,
for both case-studies and for the three point prediction methods considered as input, this
method leads to higher values of the skill score, which encompasses all the aspects of the
evaluation of probabilistic forecast quality. This is why we will focus on this approach in
the following Paragraphs, and illustrate the influence of its degrees of freedom, on relia-
bility, sharpness and resolution. This study comprises a sensitivity analysis of its perfor-
mance and will result in general guidelines for its application to further case-studies or
alternatively for online forecasting exercises.

5.8.2 Influence of the fuzzy mapping of the forecast conditions

The idea of introduced method is to propose a situation-dependent assessment of the
forecast uncertainty: fuzzy logic is used for mapping several zones with different char-
acteristics of the prediction error distributions. As explained previously, we concentrate
here on the variation of the forecast uncertainty as a function of the level of predicted
power. The range of possible predicted power values is divided into several ranges, to
which we associate triangular fuzzy sets. It is expected that increasing the number of
fuzzy sets will mainly have a positive effect on increasing the resolution of predictive
distributions. In a general manner, increasing the resolution of probabilistic forecasting
methods will augment their value for the management or the trading of wind generation
(as long as they are still reliable). Three possibilities are envisaged: using only one fuzzy
set on the power range (which is equivalent to using the classical Williams-Goodman
empirical approach, cf. Paragraph 5.4.1), and a mapping with alternatively 3 or 5 fuzzy
sets. We set the sample size to 300 elements and the number of bootstrap replications
to 50. The considered case-study for that sensitivity analysis is Tunø Knob. The point
predictions used as input are provided by the M2 method.

For assessing in a first stage the reliability of the probabilistic forecasts produced with
these three settings, we use the reliability diagrams depicted in Figure 5.9. The deviations
from nominal coverage are given as the average deviations over the whole range of look-
ahead times. The figures given in the legend are the average absolute deviations from
‘perfect reliability’ (over the various nominal coverage rates and forecast horizons).

One sees from Figure 5.9 that the deviations from ‘perfect reliability’ are of the same
order for the various settings: they are within ±2.5%. Even if it is not the primary aim
of the mapping, it seems that using several fuzzy sets permits to increase the overall
reliability of estimated quantiles. In this example, the average absolute deviation is 1.40
% for Williams-Goodman intervals, whereas it is equal to respectively 1.05 and 1.12% for
the two other settings with 3 and 5 fuzzy sets.

Then, we turn our attention to sharpness and resolution. Since sharpness proved to
be similar for the three settings and that the power curve mapping is mainly expect to
impact the resolution of predictive distributions, we focus here only on the latter qual-
ity aspect. We base our evaluation of the resolution property of the intervals on the
σ-diagrams depicted in Figure 5.10, which give the standard deviation of the interval
size as a function of the interval nominal coverage rate. As an example, we focus on
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Figure 5.9: Reliability diagrams for evaluating the influence of the power curve mapping on the resulting
probabilistic forecasts’ reliability.
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Figure 5.10: σ-diagrams for 24-hour ahead forecasts for evaluating the influence of the power curve map-
ping on the resulting probabilistic forecasts resolution.
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the σ-diagrams of 24-hour ahead probabilistic forecasts, but similar conclusions could
be derived if looking at σ-diagrams for 24-hour ahead probabilistic forecasts, but sim-
ilar conclusions could be derived if looking at σ-diagrams for other look-ahead times.
When going from Williams-Goodman to adapted resampling intervals, the resolution is
significantly augmented, whatever the degree of confidence. For the example of the 50%-
confidence prediction interval, the standard deviation of the interval size is actually mul-
tiplied by a factor 3. Also, one sees that by using more fuzzy sets for mapping the power
curve, the resolution can be increased even more, mostly for high degrees of confidence.
This means that the method has a better ability to differentiate the tail ends of predictive
distributions. However, considering 3 or 5 subsets of forecast conditions leads to the con-
stitution of the same number of error samples (respectively 3 and 5 samples of prediction
errors). Therefore increasing the method resolution has a cost, which is the time needed
for filling the error samples. Here a minimum of respectively 900 and 1500 series of point
predictions are necessary for filling the samples. Note that this is does not appear to be
a restriction for the application of the method, since intervals can be estimated even if all
the samples are not full. The only consequence is that predictive distributions may not
be as reliable as it would be expected in a first period of the application. This is certainly
a reason why predictive distributions produced with the 5-fuzzy-set configuration are
slightly less reliable than the ones from the 3-fuzzy-set configuration here. Finally, even
if we have focused on the resampling method, we have noticed that the fuzzy mapping
of the forecast conditions has a similar influence on the skill of the linear opinion pool
approach.

5.8.3 Influence of the sample size

The second part of the study concerns the influence of the sample size, i.e. the number
of past prediction errors, on the skill of the estimated intervals provided by the adapted
resampling method. Intuitively, considering more past errors should permit to better un-
derstand the uncertainty of the process and thus to augment the reliability of estimated
predictive distributions. However, relying on very large error samples would make the
method less dynamic. Here, the number of fuzzy sets is set to five and the number of
bootstrap replications to 50. We produce probabilistic forecasts with error samples con-
taining 50, 100, 200 and 300 elements.

The reliability diagrams displayed in Figure 5.11 show how the sample size affects the
predictive distributions’ reliability. The absolute average deviation from ‘perfect reliabil-
ity’ greatly diminishes as we use more elements in the adapted resampling procedure.
This absolute average deviation is divided by 2 if considering the last 300 errors instead
of dealing with the last 50 only. Also, one notes from the reliability diagrams that the
trend to have too narrow intervals (i.e. overestimated quantiles if below the median and
underestimated if above the median) diminishes when the sample size is increased.

For evaluating the sharpness of the interval forecasts, we superpose δ-diagrams for
the various method settings (Figure 5.12). This Figure is for 24-hour ahead probabilistic
forecasts. In a general manner, the average interval size ranges from ∼5% of nominal
power for intervals at a 10% degree of confidence to ∼50% for those associated with a
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Figure 5.11: Reliability diagrams for evaluating the influence of error sample size on the resulting proba-
bilistic forecasts’ reliability.
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Figure 5.12: δ-diagrams for 24-hour ahead forecasts for evaluating the influence of the error sample size on
the resulting probabilistic forecasts’ sharpness.
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90% degree of confidence. Whatever the nominal coverage rate, the average size de-
creases when considering more past prediction errors for estimating predictive distribu-
tions. This diminution in the mean size is up to 10% when going from 50 to 300 sample
elements. Therefore, by increasing the sample size, we improve both the forecasts re-
liability and their sharpness. That parameter does not have a significant effect on the
resolution of predictive distributions.

This study of the influence of the sample size also tells what can be the expected
quality of probabilistic forecasts in a first period of an online forecasting exercise, as error
samples are filled when new point predictions are provided. At the very beginning, error
samples are empty and the approach we have developed cannot be used for estimating
interval forecasts. However, one understands by looking at Figures 5.11 and 5.12 that
an acceptable performance is already attained with a minimum number of 50 elements.
Therefore, defining a larger sample size does not affect the quality of estimated interval
in that sample-filling period. Note that one may also envisage to extract error samples
from an offline forecasting exercise with the wind farm of interest, and use these samples
for initializing the prediction interval estimation method for the online application.

5.8.4 Influence of the number of bootstrap replications

In the last part of the present sensitivity analysis, we turn our attention to the influence
of the number of bootstrap replications on the quality of resulting predictive distribu-
tions of wind generation. For the adapted resampling method, the number of bootstrap
replications correspond to the number of combined error samples created by following
the fuzzy inference model (5.36). This degree of freedom is not present in the linear opin-
ion pool approach. Augmenting the number of bootstrap replications then translates to
considering more alternative scenarios for estimating the quantiles of predictive distribu-
tions. For better illustrating the influence of that parameter, we focus on smaller samples
or errors. Here, that sample size is set to 50. The range of possible predicted power values
is still mapped with 5 triangular fuzzy sets.

Primarily, we concentrate on the way the reliability of predictive distributions evolves
with the number of bootstrap replications. Figure 5.13 gathers the reliability diagrams of
these distributions when estimated after 1, 10, 100 and 1000 resampling steps. Again,
average absolute deviations from ‘perfect reliability’ are given in the legend. Results are
again for the whole forecast length. One notices that reliability is significantly increased
when augmenting the number of bootstrap replications, up to 100 replications. However,
it seems that increasing that parameter value is not necessary, since reliability remains at
a similar level. Figure 5.14 then depicts the evolution of the skill score with the forecast
horizon, where the skill score is defined in the same manner than in Paragraph 5.8.1.
The curves for the various number of bootstrap replications are quite close, but one sees
from the average values in the legend that the score values augment when considering
more resampling steps. Better reliability contributes to augmenting the overall quality
of predictive distributions. And, by considering 1000 resampling steps this overall qual-
ity is even slightly higher, certainly because probabilistic forecasts get sharper. But, as
resampling methods are CPU-demanding, it is not desirable to use more and more boot-
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Figure 5.13: Reliability diagrams for evaluating the influence of the number of bootstrap replications on
the resulting probabilistic forecasts’ reliability.
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Figure 5.14: Influence of the number of bootstrap replications on the overall quality of predictive distribu-
tions. Overall quality is assessed with the skill score, given as a function of the forecast horizon.
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strap replications if not necessary. Therefore, in the frame of an online application, one
has to find a trade-off between the desired quality and the time that may be needed for
computing probabilistic forecasts.

5.9 Conclusions

A generic method for assessing online the uncertainty of short-term wind power fore-
casts in the form of prediction intervals has been introduced. The developed method is
designed for the case of nonstationary, nonlinear and bounded time-series of prediction
errors. It has a non-parametric and empirical nature, since it considers recent predic-
tion errors for estimating predictive distributions of wind generation. A great advantage
of that method is that it permits to construct the whole distribution of errors at once,
and can thus be used for estimating several prediction intervals without needing several
models. Also, by having this empirical view, we encompass all the sources of uncertainty
that may come from the input data, the chosen prediction model and its parameters, etc.
However, the proposed method requires a subject-matter expertise of the process of in-
terest, since the mapping of the forecast conditions related to various characteristics of
the prediction error distributions has to be carried out by the analyst. Here, that exper-
tise follows from the study of the characteristics of the state-of-the-art point prediction
methods described in Anemos Deliverable Report 2.1 [64]. A fuzzy inference model is
proposed, which permits to produce conditional error distributions given the forecast
conditions, in the form of combined probability distributions. Predictive distributions of
wind generation are then obtained by dressing point predictions with related conditional
distributions of forecast errors. Two approaches for the combination of probability distri-
butions resulting from the fuzzy inference model have been described. On the one hand,
we applied the so-called linear opinion pool, which is a classical method in the probabil-
ity combination literature. On the other hand, we have introduced an original approach
referred to as adapted resampling. Such a method follows from the basic idea of resam-
pling methods, which consists in thinking that more information can be extracted from
a sample of data by cleverly going through that sample a certain number of times. In
our case, the multi-sample resampling scheme is used for estimating the quantiles of the
combined error distributions from samples representing the individual ones.

We have thoroughly demonstrated the quality of this method for the estimation of
prediction intervals of wind power by evaluating its statistical performance. For that
purpose, we have gathered a set of relevant skill scores, measures and diagrams, in a non-
parametric framework suitable for assessing the developed method’s properties. These
properties include the reliability, sharpness and resolution of interval forecasts. The veri-
fication framework allowed us to conclude on the superiority of the adapted resampling
method on the linear opinion pool approach. Also, we have considered some of the
criteria for illustrating the influence of the method parameters on the various required
properties for prediction intervals: mapping the forecast conditions increase the resolu-
tion of the resulting probabilistic predictions, while augmenting the sample size or the
number of bootstrap replications mainly has an effect on the reliability property. Finally,
we have given guidelines regarding the method configuration if applied for online fore-
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casting exercises, since it definitely has an operational nature.

It was clearly shown that the approach is suitable for application to current state-
of-the-art point prediction methods of wind generation. Our opinion is that the quality
(more precisely the sharpness) of predictive distributions produced from such methods
is bounded by the quality of the point predictions used as input. This follows from the
fact that here probabilistic forecasts are based on the modeling of the point predictor’s er-
ror distributions. The sharper these distributions, the sharper the resulting probabilistic
forecasts. Therefore, further research works should go towards direct probabilistic fore-
casting of wind generation, in order to verify if by releasing the constraint of using power
point predictions as input one can further increase the quality of predictive distributions.
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Chapter 6

General Conclusions

In this report, we have described the methods developed in the frame of the Anemos
project for estimating the uncertainty of point predictions of wind power production.

Since a part of the prediction error directly comes from the meteorological forecasts
used as input, a possibility for telling on the confidence one may have in the wind power
predictions has been to identify weather situations related to different levels of predic-
tion error. It has been shown there were significant differences in average prediction
accuracy among the different identified weather classes. Further focusing on the mete-
orological aspects for providing skill forecasts will be an important direction for future
developments.

Another part of the work has consisted in using a model for the conversion of wind
speed prediction errors to power prediction errors (with the local derivative of an ex-
plicit power curve) for associating point predictions with error bands. Such error bands
inform on the magnitude of likely deviations from the predictions. Alternatively, two
non-parametric methods have been described for estimating quantiles of predictive dis-
tributions of wind power output. By estimating several quantiles with different pro-
portions, one may associate point forecasts with prediction intervals or even with full
predictive distributions of expected generation at a given lead time. The two methods
that have been introduced are based on quantile regression and on an empirical-type ap-
proach integrating an expert model. The quality of their output have been evaluated on
several case-studies. Both methods are promising for online application.

Regarding future research works, it will be of particular interest to further develop
on methods for probabilistic forecasting of wind power output, which could be either
parametric or non-parametric. Ensemble predictions of meteorological variables can also
be considered as input for that purpose. And, in order to compare the various methods
that exist in the literature today, as well as the ones that are going to be developped in the
next few years, it will be of particular importance to enrich and generalise the verification
framework introduced in the present report. Verification frameworks are the basis for
justifying new developments and evaluating their related benefits.

Probabilistic predictions are provided here for each look-ahead time, and do not
adress the issue of the correlation in forecast errors. Such correlation exists within predic-
tion series (that is, for consecutive look-ahead times), and also for successive prediction
series. This is due to the fact that forecast errors typically occur if the prevailing weather
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situation deviates from the predicted one, and this has a time scale of several hours.
Proposing models for the correlation of these errors, or integrating this correlation infor-
mation in probabilistic prediction models will significantly improve the value of wind
power forecasts.

Finally, a direction for further research is to relate the quality of probabilistic predic-
tions (that is, in terms of their statistical performance) and their value for the end-users,
which will be measured by their increased benefits resulting from the use of such ad-
vanced forecasting methodologies. For that, we will have to consider different decision-
making processes, either for the management of power systems integrating a significant
share of wind power, or for the participation of wind power producers in electricity mar-
kets.
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Appendix A

Parametric additive quantile models

in “R”

The “quantreg” library or package is not part of a standard “R” installation. To install the
package start “R” and issue the command:

install.packages("quantreg")

However, please read the help-page before issuing this command.
Assume that the data is contained in a data frame named train with columns y, x1,

and x2. Furthermore, data for which quantile forecasts must be computed is assumed to
be contained in a similar data frame named test with columns x1 and x2.

The R-script shown in Table A.1 illustrates how parametric additive quantile models
can be fitted, how the results can be visualized, and how forecasts can be produced.

Periodic bases [21] can be constructed from the output of the function bs. This is done
by the S-PLUS/R function pb.bse found in the file periodic.bases.q at
http://www.imm.dtu.dk/~han/pubwhich has been used in this paper. The restric-
tion that the function approximated by the periodic basis integrates to zero over the pe-
riod is imposed on the periodic basis using the function downloadable as bint0.q.
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Table A.1: R-script. Functions and operators are indicated by the bold font, comments start with “## ”.

## Load r e q u i r e d l i b r a r i e s :
l i b r a r y ( s p l i n e s )
l i b r a r y ( quantreg )

## Make n a t u r a l s p l i n e b a s e s wi th 10 columns and k n o t s p l a c e d
## a c c o r d i n g t o t h e q u a n t i l e s o f x1 and x2 :
b a s i s . x1 <− ns ( t r a i n $ x 1 , df = 10 , i n t e r c e p t = F )
b a s i s . x2 <− ns ( t r a i n $ x 2 , df = 10 , i n t e r c e p t = F )

## F i t 25% and 75% q u a n t i l e m ode l s (1 d e n o t e s t h e i n t e r c e p t ) :
f i t 2 5 <− rq ( t r a i n $y ~ 1 + b a s i s . x1 + b a s i s . x 2 , tau = 0 . 2 5 )
f i t 7 5 <− rq ( t r a i n $y ~ 1 + b a s i s . x1 + b a s i s . x 2 , tau = 0 . 7 5 )

## E s t i m a t e d c o e f f i c i e n t s :
coef ( f i t 2 5 )
coef ( f i t 7 5 )

## P l o t o f f i t t e d v a l u e s o f t h e e s t i m a t e s r e l a t e d t o x1 :
i n t e r c e p t . avg <− ( coef ( f i t 2 5 ) [ " ( I n t e r c e p t ) " ] + coef ( f i t 7 5 ) [ " ( I n t e r c e p t ) " ] ) / 2
matplot ( t r a i n $ x 1 ,

cbind ( b a s i s . x1 %∗% coef ( f i t 2 5 ) [ grep ( " b a s i s \\. x1 " , names ( coef ( f i t 2 5 ) ) ) ]
+ coef ( f i t 2 5 ) [ " ( I n t e r c e p t ) " ] − i n t e r c e p t . avg,
b a s i s . x1 %∗% coef ( f i t 7 5 ) [ grep ( " b a s i s \\. x1 " , names ( coef ( f i t 7 5 ) ) ) ]
+ coef ( f i t 7 5 ) [ " ( I n t e r c e p t ) " ] − i n t e r c e p t . avg

) )

## P l o t o f f i t t e d v a l u e s o f t h e e s t i m a t e s r e l a t e d t o x2 :
matplot ( t r a i n $ x 2 ,

cbind ( b a s i s . x2 %∗% coef ( f i t 2 5 ) [ grep ( " b a s i s \\. x2 " , names ( coef ( f i t 2 5 ) ) ) ]
+ coef ( f i t 2 5 ) [ " ( I n t e r c e p t ) " ] − i n t e r c e p t . avg,
b a s i s . x2 %∗% coef ( f i t 7 5 ) [ grep ( " b a s i s \\. x2 " , names ( coef ( f i t 7 5 ) ) ) ]
+ coef ( f i t 7 5 ) [ " ( I n t e r c e p t ) " ] − i n t e r c e p t . avg

) )

## F o r e c a s t f o r d a t a f r am e ’ t e s t ’ :
t e s t . b . x1 <− ns ( t e s t $ x 1 ,

knots = a t t r i b u t e s ( b a s i s . x1 ) $ k n o t s ,
Boundary . knots = a t t r i b u t e s ( b a s i s . x1 ) $Boundary . k n o t s ,
i n t e r c e p t = a t t r i b u t e s ( b a s i s . x1 ) $ i n t e r c e p t )

t e s t . b . x2 <− ns ( t e s t $ x 2 ,
knots = a t t r i b u t e s ( b a s i s . x2 ) $ k n o t s ,
Boundary . knots = a t t r i b u t e s ( b a s i s . x2 ) $Boundary . k n o t s ,
i n t e r c e p t = a t t r i b u t e s ( b a s i s . x2 ) $ i n t e r c e p t )

##
## Comment : I t i s ve ry i m p o r t a n t t h a t t h e b a s e s f o r p r e d i c t i o n a r e
## c o n s t r u c t e d i n d e p e n d e n t l y from t h e t e s t d a t a , i . e . by s u p p l y i n g t h e
## k n o t s e t c . as o u t l i n e d above .
##
qForecas t <− data . frame ( Q25 = cbind (1 , t e s t . b . x 1 , t e s t . b . x2 ) %∗% coef ( f i t 2 5 ) ,

Q75 = cbind (1 , t e s t . b . x 1 , t e s t . b . x2 ) %∗% coef ( f i t 7 5 ) )
## P r i n t f o r e c a s t s :
qForecas t
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Appendix B

Implementation of a Module for

Online Estimation of Prediction

Intervals of Wind Generation

The methods for the estimation of prediction intervals of wind generation have been
developed for online operation. In the frame of the thesis, we have also developed a
module (in C++ programming language) which is integrated in the ANEMOS prediction
platform. In the present Appendix, we present the main characteristics of this module,
from its configuration by the analyst to the visualization of prediction intervals, via some
details about its operation in an online environment.

Module setup

In the ANEMOS prediction platform, the necessary information for the operation of
the different prediction modules are stored in a Static Data Repository (SDR), which is
the database with all the static data. These information include the characteristics of
the considered wind farm (e.g. geographical coordinates), of the NPWs (e.g. temporal
resolution), etc. Then, each of the prediction modules may utilize a local configuration
file in which are stored its specific parameters. The configuration file for the interval
forecasting module contains the following parameters:

Method: defines the chosen approach for the computation of prediction intervals, i.e.
linear opinion pool or adapted resampling,

File path: defines the path to the directory where are stored the local memory files nec-
essary for the operation of the module (i.e. history of predictions and influential
variables, and error samples),

Number of intervals: defines the number of prediction intervals to be computed. What-
ever the chosen approach, several intervals can be computed at once since they
model the whole predictive distribution of wind generation for every horizon,
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Algorithm B.1: The chain of tasks to be carried out by the uncertainty estimation module at each prediction

time.

step 1. Load the module configuration file and the relevant parameters
from the SDR

step 2. Retrieve the new power measures, power predictions and influential
variable values from the TSDR

step 3. Load the memory files containing stored values of power predic-
tions and influential variables

step 4. Load the memory files containing the error samples
step 5. Calculate the prediction errors from collected power measures and

stored predictions
step 6. Determine the forecast conditions related to calculated prediction

errors
step 7. Update and save the files containing power predictions and influen-

tial variables
step 8. Update error samples given the forecast conditions, and save them

in the memory files
step 9. Use the fuzzy inference model for determining the distributions of

prediction errors associated to every power predictions
step 10. Apply either the linear opinion pool or the adapted resampling

method for estimating the bounds of the prediction intervals with
the required nominal coverage rates

step 11. Save the prediction intervals in the TSDR

Nominal coverage rate (i): defines the nominal coverage rate of the ith prediction interval
to be computed. Such value is comprised between 0 and 100%,

Sample size: defines the size of the samples of past prediction errors,

Resampling times: defines the number of bootstrap replications if one chooses to utilize
the adapted resampling approach,

Number of influential variables: defines the number of influential variables,

Influential variable (i): gives the type of the ith influential variable, such as predicted
wind power or forecast wind speed for instance,

Number of ranges (i): defines the number of ranges of values that have to be considered
for the ith influential variable. For instance, if this parameter is set to 5 for the pre-
dicted power variable, then the range of possible predicted power values is divided
into 5 ranges. To each of these ranges is associated a triangular fuzzy set,

[low,up] (i,j): defines the lower and upper bound of the jth range of values for the ith

influential variable. The fuzzy set related to this range of values is defined accord-
ingly.

One sees from this list of parameters that the configuration of the module can be
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tailored to the considered application, depending on the analyst’s expertise on the speci-
ficities of that application.

Operation

The module provides interval forecasts with the same forecast length and resolution
than the point prediction module it is associated to. In most of the cases, predictions are
produced for look-ahead times up to 48-hour ahead, with an hourly resolution. Also,
prediction intervals are provided with the same frequency of update than the point pre-
diction module it is associated to. In general, forecasts are updated on an hourly basis for
statistical methods and only when NWPs are provided for the case of physical methods
(e.g. every 6 hours when considering HIRLAM meteorological predictions as input).

A scheduler is at the heart of the ANEMOS prediction platform. It manages the re-
trieval of onsite measures and meteorological forecasts, as well as the operation of the
various modules. Since interval forecasts are associated to series of point predictions, the
module for uncertainty estimation is run just after the point forecasting one. The chain
of tasks to be carried out by the uncertainty estimation module is similar to the chain
described by Algorithm 4.1, with some additional steps dedicated to the communication
with the Time-Series Data Repository (TSDR), which is the database containing all the
dynamic data, as well as file management issues. This chain is given by Algorithm B.1.

During online operation, power measurements, power predictions and influential
variables values (e.g. wind speed forecasts) may be erroneous or missing. Hence, the
second step of the above Algorithm, which consists in the retrieval of these data, also
integrates a data checking procedure. If power measurements are missing, the prediction
errors cannot be calculated and thus error samples are not updated. And, if power pre-
dictions or influential variable values are missing or erroneous, interval forecasts are not
computed. Instead, series of "-99" values are returned (in step 11), as well as a message
indicating that interval computation was not possible.

Results and Visualization

The ANEMOS platform is also composed by a man-machine interface. Such an in-
terface allows the end-user to visualize historic power production, power predictions,
as well as associated prediction intervals. Also, the end-user may use that interface for
consulting reports on the performance of the various prediction methods over a given
period.

Figure B.1 shows a general view of the man-machine interface. In the upper window
is represented the island of Crete, with the 12 wind farms for which wind generation is
predicted. For wind farms that are equipped with SCADA systems and thus for which
power measurements are regularly stored in the TSDR, the interval forecasts produced
from the previously described uncertainty estimation module can be visualized at the
same time than the point predictions. The two lower windows of Figure B.1 display
48-ahead point predictions to which are associated prediction intervals with a nominal
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coverage rate of 80%.

Figure B.1: The man-machine interface of the ANEMOS prediction platform for a Windows XP operating
system.
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