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Abstract

In classical time series analysis the sample autocorrelation func-
tion (SACF ) and the sample partial autocorrelation function
(SPACF ) has gained wide application for structural identification
of linear time series models. For non-linear time series these tools
are not applicable since they only address variation which can be
explained by linear models, and for this reason they may completely
fail to detect non-linear dependencies. We suggest generalizations,
founded on smoothing techniques, applicable for structural identi-
fication of non-linear time series models. A similar generalization
of the sample cross correlation function is discussed. Furthermore, a
measure of the departure from linearity is suggested. It is shown how
bootstrapping can be applied to test for independence and for lin-
earity. The generalizations do not prescribe a particular smoothing
technique. In fact, when the smoother are replaced by a linear re-
gression the generalizations of SACF and SPACF reduce to a close
approximation of their linear counterparts. For this reason a smooth
transition form the linear to the non-linear case can be obtained by
varying the bandwidth of a local linear smoother. By adjusting the
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flexibility of the smoother the power of the tests for independence
and linearity against specific alternatives can be adjusted. The gen-
eralizations allow for graphical presentations, very similar to those
used for SACF and SPACF . In this report the generalizations are
tested on some simulated data sets and on the Canadian lynx data.
The generalizations seem to perform well and the measure of the
departure from linearity proves to be an important additional tool.

KEY WORDS: Lagged scatter plot; Non-linear time series; Smooth-
ing; Non-parametric; Independence; Bootstrap.

1 Introduction

The sample autocorrelation function and the sample partial autocorrelation
function have gained wide application for structural identification of linear
time series models. For non-linear time series these tools are not sufficient
because they only address linear dependencies.

During the last couple of decades a number of results on properties of,
and estimation and testing in, nonlinear models have been obtained. For
an overview (Priestley, 1988; Tong, 1990; Tjøstheim, 1994) can be con-
sulted. However, considerable fewer results have been seen on the problem
of structural identification. Tjøstheim and Auestad (1994) have suggested
a method based on kernel estimates to select the significant lags in a non-
linear model, and Granger and Lin (1994) used the mutual information
coefficient and Kendall’s τ as generalizations of the correlation coefficient
and Kendall’s partial τ as a generalization of the partial correlation co-
efficient. Chen and Tsay (1993) have considered a best subset modelling
procedure and the ACE and BRUTO algorithms, see e.g. (Hastie and Tib-
shirani, 1990), for identification of non-linear additive ARX models. Re-
cently, Lin and Pourahmadi (1998) have used the BRUTO algorithm to
identify the lags needed in a semi-parametric non-linear model. Multi-
variate adaptive regression splines (Friedman, 1991) was introduced for
modelling of non-linear autoregressive time series by Lewis and Stevens
(1991). Teräsvirta (1994) suggested a modelling procedure for non-linear
autoregressive time series in which a (parametric) smooth threshold au-
toregressive model is used in case a linear model proves to be inadequate.
For the case of non-linear transfer functions Hinich (1979) considered the
case where the impulse response function of the transfer function depends
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linearly on the input process.

In this report we define the new tools LDF (Lag Dependence Function),
PLDF (Partial Lag Dependence Function), and NLDF (Non-linear Lag
Dependence Function) for structural identification of non-linear time series.
The tools can be applied in a way very similar to the sample autocorrela-
tion function and the sample partial autocorrelation function. The tools
are based on smoothing techniques, but they are not dependent on any
particular smoother, see e.g. (Hastie and Tibshirani, 1990, Chapter 3) for
an overview of smoothing techniques. For some smoothers an (almost) con-
tinuous transition from the linear to the non-linear case can be obtained by
varying the smoothing parameter. Also, smoothers applying optimal selec-
tion of the bandwidth may be used; however, see e.g. (Chen and Tsay, 1993)
for a discussion of the potential problems in applying criteria such as gener-
alized cross validation to time series data. Under a hypothesis of indepen-
dence bootstrap confidence intervals (Efron and Tibshirani, 1993) of the lag
dependence function are readily calculated, and we propose that these can
also be applied for the partial lag dependence function. Furthermore the
non-linear lag dependence function can be used to test specific linear hy-
pothesis. A modification of the partial lag dependence function is suggested
that seemingly is more appropriate for identifying models for prediction.
This also applies when linear models are used. The lag dependence function
and the non-linear lag dependence function are readily calculated in that
only univariate smoothing are needed, whereas multivariate smoothing or
backfitting are required for the application of the remaining tools.

The suggested tools are illustrated both by using simulated linear and
non-linear time series models, and by considering the Canadian lynx data
(Moran, 1953), which have attained a bench-mark status in time series lit-
erature. Using the Canadian lynx data results very similar to those found
by Lin and Pourahmadi (1998) are obtained.

In Section 2 the study is motivated by considering a simple deterministic
non-linear process for which the sample autocorrelation function is non-
significant. Section 3 describes the relations between multiple linear re-
gression, correlation, and partial correlation with focus on aspects leading
to the generalization. The proposed tools are described in Sections 4, 5,
6, and 7 and bootstrapping is considered in Section 8. Examples of ap-
plication by considering simulated linear and non-linear processes and the
Canadian lynx data (Moran, 1953) are found in Section 9. In Section 10 a
generalization of the sample cross correlation function is briefly discussed.
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Finally, in Section 11 some further remarks are given.

2 Motivation

The sample autocorrelation function (Brockwell and Davis, 1987), com-
monly used for structural identification in classical time series analysis,
measures only the degree of linear dependency. In fact deterministic se-
ries exists for which the sample autocorrelation function is almost zero, see
also (Granger, 1983). One such example is xt = 4xt−1(1 − xt−1) for which
Figure 1 shows 1000 values using x1 = 0.8 and the corresponding sample
autocorrelation function SACF together with an approximative 95% con-
fidence interval of the estimates under the hypothesis that the underlying
process is i.i.d. Furthermore lagged scatter plots for lag one and two are
shown. From the plot of the series and the SACF the deterministic struc-
ture is not revealed. However, the lagged scatter plots clearly reveals that
the series contains a non-linear dynamic dependency.
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Figure 1: The time series (top), SACF (bottom, left), xt versus xt−1

(bottom, middle), and xt versus xt−2 (bottom, right) for 1000 values from
the recursion xt = 4xt−1(1 − xt−1).

In practice the series will often be contaminated with noise and it is then
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difficult to judge from the lagged scatter plots whether any dependence
is present. Smoothing the lagged scatter plots will aid the interpretation
but different smoothing parameters may result in quite different estimates.
Therefore it is important to separate the variability of the smooth from the
underlying dependence.

From Figure 1 it is revealed that, in principle, xt can be regarded as a
function of xt−k for any k > 0, but k = 1 is sufficient, since xt can be
predicted exactly from xt−1 alone. This indicates that there may exist
a non-linear equivalent to the partial autocorrelation function (Brockwell
and Davis, 1987) and reveals that substantial information can be obtained
by adjusting for the dependence of lag 1, . . . , k − 1 when xt and xt−k are
addressed. The sample partial autocorrelation function amounts to a linear
adjustment.

3 Preliminaries

Estimates of correlation and partial correlation are closely related to values
of the squared degree of determination (R-squared) obtained using linear
regression models. The generalizations of the sample autocorrelation func-
tion SACF and the sample partial autocorrelation function SPACF are
based on similar R-squared values obtained using non-linear models. In
this section the relations between multiple linear regression, correlation,
and partial correlation are presented.

Consider the multivariate stochastic variable (Y, X1, . . . , Xk). The squared
multiple correlation coefficient ρ2

0(1...k) between Y and (X1, . . . , Xk) can be

written (Kendall and Stuart, 1961, p. 334, Eq. (27.56))

ρ2
0(1...k) =

V [Y ] − V [Y |X1, . . . , Xk]

V [Y ]
. (1)

If the variances are estimated using a maximum likelihood estimator, as-
suming normality, it then follows that an estimate of ρ2

0(1...k) is

R2
0(1...k) =

SS0 − SS0(1...k)

SS0
, (2)

where SS0 =
∑

(yi − ȳ)2 (where ȳ =
∑

yi/N) and SS0(1...k) is the sum
of squares of the least squares residuals when regressing yi linearly on

5



x1i, . . . , xki (i = 1, . . . , N). R2
0(1...k) is also called the squared degree of

determination of the regression and can be interpreted as the relative re-
duction in variance due to the regressors.

Hence it follows that when regressing yi linearly on xki the squared degree
of determination R2

0(k) equals the squared estimate of correlation between

Y and Xk, and furthermore it follows that R2
0(k) = R2

k(0).

The partial correlation coefficient ρ(0k)|(1...k−1) between Y and Xk given
X1, . . . , Xk−1 measures the extend to which, by using linear models, the
variation in Y , which cannot be explained by X1, . . . , Xk−1, can be ex-
plained by Xk. Consequently, the partial correlation coefficient is the
correlation between (Y |X1, . . . , Xk−1) and (Xk |X1, . . . , Xk−1), see also
(Rao, 1965, p. 270). Using (Whittaker, 1990, p. 140) we obtain

ρ2
(0k)|(1...k−1)

=
V [Y |X1, . . . , Xk−1] − V [Y |X1, . . . , Xk]

V [Y |X1, . . . , Xk−1]
. (3)

For k = 1 it is readily seen that ρ2
(0k)|(1...k−1) = ρ2

0(1). If the variances are
estimated using the maximum likelihood estimator, assuming normality, it
follows that an estimate of ρ2

(0k)|(1...k−1) is

R2
(0k)|(1...k−1) =

SS0(1...k−1) − SS0(1...k)

SS0(1...k−1)
. (4)

Besides an estimate of ρ2
(0k)|(1...k−1) this value can also be interpreted as

the relative decrease in the variance when including xki as an additional
predictor in the linear regression of yi on x1i, . . . , xk−1,i. Note that (4) may
also be derived from (Ezekiel and Fox, 1959, p. 193).

Interpreting R2
0(1...k), R2

0(k), and R2
(0k)|(1...k−1) as measures of variance re-

duction, these can be calculated and interpreted for a wider class of models.
In the remaining part of this report “ ˜ ” will be used above values of SS
and R2 obtained from models other than linear models.

4 Lag Dependence

Assume that observations {x1, . . . , xN} from a stationary stochastic process
{Xt} exists. It is readily shown that the estimate of the autocorrelation
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function in lag k is approximately equal to the estimate of the correla-
tion coefficient between Xt and Xt−k using the observations {x1, . . . , xN}.
Hence, the squared SACF (k) can be approximated by the squared degree
of determination when regressing xt linearly on xt−k, i.e. R2

0(k).

This observation leads to a generalization of SACF (k), based on R̃2
0(k)

obtained from a smooth of the k-lagged scatter plot, i.e. a plot of xt

against xt−k. The smooth is an estimate of the conditional mean fk(x) =
E[Xt |Xt−k = x]. We then define the Lag Dependence Function in lag k,
LDF (k), as

LDF (k) = sign
(
f̂k(b) − f̂k(a)

) √
(R̃2

0(k))+ (5)

where a and b is the minimum and maximum over the observations and
the subscript “+” indicates truncation of negative values. The truncation
is necessary to ensure that (5) is defined. However, the truncation will only
become active in extreme cases. For some smoothers and lags it becomes
active for the series considered in Figure 1.

Due to the sign, when f̂k(·) is restricted to be linear, LDF (k) is a good ap-
proximation of SACF (k) and, hence, it can be interpreted as a correlation.
In the general case LDF (k) can be interpreted as (the signed square-root
of) the part of the overall variation in xt which can be explained by xt−k.
Generally, R-squared for the non-parametric regression of xt on xt−k, R̃0(k)

do not equal R-squared for the corresponding non-parametric regression of
xt−k on xt, and consequently, unlike SACF (k), the lag dependence func-
tion is not an even function. In this report only causal models will be
considered and (5) will only be used for k > 0 and by definition LDF (0)
will be set equal to one.

5 Strictly Non-Linear Lag Dependence

The lag dependence function described in Section 4 measures both linear
and non-linear dependence. If, in the definition of R̃2

0(k), the sum of squares
from a overall mean SS0 is replaced by the sum of squares from fitting
a strait line to the k-lagged scatter plot, a measure of non-linearity is
obtained. In this report this will be called the strictly Non-linear Lag
Dependence Function in lag k, or NLDF (k).
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6 Partial Lag Dependence

For the time series {x1, . . . , xN} the sample partial autocorrelation function

in lag k, denoted SPACF (k) or φ̂kk, is obtainable as the Yule–Walker
estimate of φkk in the AR(k) model

Xt = φk0 + φk1Xt−1 + . . . + φkkXt−k + et, (6)

where {et} is i.i.d. with zero mean and constant variance, see also (Brockwell
and Davis, 1987, p. 235). An additive, but non-linear, alternative to (6) is

Xt = ϕk0 + fk1(Xt−1) + . . . + fkk(Xt−k) + et. (7)

This model may be fitted using the backfitting algorithm (Hastie and Tib-
shirani, 1990), see also Section 6.1. The function fkk(·) can be interpreted
as a partial dependence function in lag k when the effect of lags 1, . . . , k−1
is accounted for. If the functions fkj(·), (j = 1, . . . , k) are restricted to be

linear then f̂kk(x) = φ̂kkx and the function can be uniquely identified by

its slope φ̂kk.

However, since the partial autocorrelation function in lag k is the corre-
lation between (Xt |Xt−1, . . . , Xt−(k−1)) and (Xt−k |Xt−1, . . . , Xt−(k−1)),
the squared SPACF (k) may also be approximated by R2

(0k)|(1...k−1), based
on linear autoregressive models of order k − 1 and k. Using models of the
type (7) SPACF (k) may then be generalized using an R-squared value ob-
tained from a comparison of models (7) of order k − 1 and k. This value is
denoted R̃2

(0k)|(1...k−1) and we define the Partial Lag Dependence Function

in lag k, PLDF (k), as

PLDF (k) =

sign
(
f̂kk(b) − f̂kk(a)

) √
(R̃2

(0k)|(1...k−1))+. (8)

When (7) is replaced by (6) PLDF (k) is a good approximation of
SPACF (k). As for LDF (k), generally, PLDF (k) cannot be interpreted
as a correlation. However, PLDF (k) can be interpreted as (the signed
square-root of) the relative decrease in one-step prediction variance when
lag k is included as a predictor. For k = 1 the model (7) corresponding
to k − 1 reduce to an overall mean and the R-squared value in (8) is thus
R̃2

0(1), whereby PLDF (1) = LDF (1) if the same smoother is used for both
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functions. It can be noticed that the same relation exists between the par-
tial autocorrelation function and the autocorrelation function. For k = 0
the partial lag dependence function is set equal to one.

Except for the sign PLDF (k) may also be based on the completely general
autoregressive model

xt = gk(xt−1, . . . , xt−k) + et (9)

where g : Rk → R. However, the estimation of gk(·, . . . , ·) without other
than an assumption of smoothness is not feasible in practice for k larger
than, say, three, see also (Hastie and Tibshirani, 1990). Recently, alterna-
tives to (9) has been considered by Lin and Pourahmadi (1998).

6.1 Fitting the Additive Models

To fit the non-linear additive autoregressive model (7) the backfitting al-
gorithm (Hastie and Tibshirani, 1990) is suggested. However, concurvity
(Hastie and Tibshirani, 1990) between the lagged values of the time se-
ries may exist and, hence, the estimates may not be uniquely defined. For
this reason it is suggested to fit models of increasing order, starting with
k = 1 and ending with the highest lag K for which PLDF (k) is to be
calculated. In the calculation of the residual sum of squares only residuals
corresponding to t = K + 1, . . . , N should be used.

For the numerical examples considered in this report local polynomial re-
gression (Cleveland and Devlin, 1988) is used for smoothing. The conver-
gence criterion used is the maximum absolute change in any of the estimates
relative to the range of the fitted values. Also, an iteration limit is applied.

For k = 1 the estimation problem reduces to local polynomial regression
and hence convergence is guaranteed. If for any k = 2, . . . , K convergence
is not obtained, or if the residual sum of squares increases compared to the
previous lag, we put f̂jk(·) = 0, (j = k, . . . , K) and f̂kj(·) = f̂k−1,j(·), (j =
1, . . . , k − 1). This ensures that convergence is possible for k + 1.

7 Partial R-squared for Non-Linear Relations

Basicly, PLDF (k) compares the fit of a model containing lags 1, . . . , k
relatively to fit of a model containing lags 1, . . . , k − 1. For prediction
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purposes it may seem more appropriate to compare the reduction in the
one-step prediction variance. From the definition of R̃2

0(1...k) it is seen that

∆R̃2
0(k) = R̃2

0(1...k) − R̃2
0(1...k−1)

=
S̃S0(1...k−1) − S̃S0(1...k)

SS0
, (10)

is the normalized reduction in the (in-sample) one-step prediction error
variance when including lag k as a predictor. The Partial R-Squared Func-
tion in lag k, PRSF (k), is then defined as

PRSF (k) = sign
(
f̂kk(b) − f̂kk(a)

) √
(∆R̃2

0(k))+. (11)

As for PLDF (k) it is possible, except for the sign, to define PRSF (k)
using models of the type (9). For k = 1 the model (7) corresponding to
k−1 reduces to an overall mean and, hence, ∆R̃2

0(1) = R̃2
0(1). Consequently,

PRSF (1) is equal to PLDF (1) and LDF (1), assuming the same smoother
is used in all cases.

8 Testing Hypothesis of Independence or Lin-

earity

Smoothers usually require one or more smoothing parameters to be se-
lected, see e.g. (Hastie and Tibshirani, 1990, Chapter 3). Therefore, in
principle, smoothing parameters can be selected to obtain R-squared values
arbitrarily close to one, also when the underlying process is i.i.d. (assuming
no ties are present in the data). For this reason it is important to obtain
confidence limits of, e.g., the lag dependence function under the hypoth-
esis that the underlying process is i.i.d. and for a given set of smoothing
parameters. Furthermore, it seems applicable to use the strictly non-linear
lag dependence function to test for linearity. These aspects are considered
in this section.

8.1 Testing for Independence

Under the hypothesis that the time series {x1, . . . , xN} is observations from
an i.i.d. process the distribution of any of the quantities discussed in the
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previous sections, except NLDF (k), can be approximated by generating
a large number of i.i.d. time series of length N from an estimate of the
density function of the process and recalculating the quantities for each
of the generated time series. In this report the empirical density function
will be used. However, for short time series it may be more appropriate to
condition on a parametric form of the density function.

Methods as outlined above are often denoted bootstrap methods and in this
context various approaches to the calculation of approximate confidence
intervals have been addressed extensively in the literature, see e.g. (Efron
and Tibshirani, 1993).

If local polynomial smoothers with degree one or larger is used, then
at every point the smoother will be more flexible than a globally linear
model. Since LDF (k) and PLDF (k) reduce to close approximations of
SACF (k) and SPACF (k), respectively, when linear models are used in-
stead of smoothers, ±2/

√
N will be a lower bound on the 95% confidence

interval of LDF (k) and PLDF (k).

Calculation of LDF (k) involves only scatter plot smoothing and, thus, it is
faster to calculate than, e.g., PLDF (k). For this reason it is suggested to
base a test for independence on LDF (k) for some range k = 1, . . . , K. For
an i.i.d. process it is obvious that the distribution of LDF (k) will depend
on k only due to the fact that k affects the number of points on the k-lagged
scatter plot. Hence, when k ≪ N the distribution of LDF (k) under the
hypothesis of independence is approximately independent of k.

The sign in the definition of LDF (k) is included only to establish an ap-
proximate equality with SACF (k) when linear models are used and to
include information about the sign of the average value of the slope. When
the observations originates from an i.i.d. process LDF (k) will be positive
with probability 1/2. Consequently, when the smoother is flexible enough
the null-distribution of LDF (k) will be bimodal, since in this case R̃2

0(k)

will be strictly positive. The most efficient way of handling this problem is
to base the bootstrap calculations on the absolute value of LDF (k). Hence,
an upper confidence limit on |LDF (k)| is to be approximated.

Below the standard, percentile, and BCa methods, all defined in (Efron and
Tibshirani, 1993, Chapters 13 and 14), will be briefly discussed. For the
series considered in Figure 1 the LDF (k) were calculated for k ≤ 12 using
a local linear smoother and a nearest neighbour bandwidth of 1/3. The
result is shown in Figure 2 together with 95% bootstrap confidence limits
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calculated separately for each lag and based on 1000 bootstrap replicates,
generated under the hypothesis of independence. The BCa limit could not
be calculated for lags 1 to 4, since all the bootstrap replicates were either
smaller or larger than the actual value of |LDF (k)|. Results corresponding
to Figure 2 when the true process is standard Gaussian i.i.d. are shown
in Figure 3. For practical purposes an equality of the standard and per-
centile methods are observed (no difference is visible on the plots), whereas
the results obtained using the BCa method is highly dependent on the lag
through the value of |LDF (k)|. Hence, the BCa method cannot be used
when the confidence limit is only calculated for one lag and used for the re-
maining lags as outlined above. The high degree of correspondence between
the standard and percentile method indicates that sufficient precision can
be obtained using the standard method on fever bootstrap replicates. This
is highly related to the approximate normality of |LDF (k)| and it is sug-
gested that this is investigated for each application before a choice between
the standard and percentile method is made.
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Figure 2: Absolute value of the Lag Dependence Function of the determin-
istic series presented in Figure 1. The dots indicate the maximum over the
1000 bootstrap replicates. Standard, percentile, and BCa 95% confidence
limits are indicated by lines (BCa dotted).

The underlying model of the BCa method assumes that the estimate in
question may be biased and that the variance of the estimate depends lin-
early on an increasing transformation of the true parameter (Efron and
Tibshirani, 1993, p. 326-8), and furthermore the estimate is assumed to
be normally distributed. The bias and the slope of the line are then esti-
mated from the data. With λ being the fraction of the bootstrap replicates
strictly below the original estimate, the bias is Φ−1(λ) (Φ is the cumula-
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Figure 3: Absolute value of the Lag Dependence Function of 1000 obser-
vations from a standard Gaussian i.i.d. process. The dots indicate the
maximum over the 1000 bootstrap replicates. Standard, percentile, and
BCa 95% confidence limits are indicated by lines (BCa dotted).

tive standard Gaussian distribution function). This explains why the BCa

limit is non-existing for lags 1-4 of the deterministic series. The slope is
estimated by use of the jackknife procedure (Efron and Tibshirani, 1993,
p. 186). It seems that, although the underlying model of the BCa method
is a superset of the underlying model of the standard method, the estima-
tion of bias and slope induces some additional variation in the confidence
limit obtained. As a consequence it may be advantageous to average the
BCa limits over the lags and use this value instead of the individual values.
However, the standard and percentile methods seem to be appropriate for
this application and since significant savings of computational effort can be
implemented by use of these methods it is suggested that only these are
applied on a routine basis.

8.2 Testing for Linearity

Assuming a specific linear model this can be used for simulation and an
approximate bootstrap confidence limit for |NLDF (k)| can be obtained
given this model. Consequently, the alternative contains both linear and
non-linear models. To make the approach sensible the linear model needs
to be appropriately selected, i.e. using the standard time series tools of
identification, estimation, and validation. Alternatively, the simulations
can be performed using autocovariances only and assuming these to be
zero after a specific lag. In this case an estimator of autocovariance must
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be used that ensures that the autocovariance function used for simulation is
non-negative definite, see e.g. (Brockwell and Davis, 1987, p. 27). Note that
using this approach on the series considered in Figure 1 will, essentially,
result in a test for independence.

Hjellvik and Tjøstheim (1996) consider a similar test for linearity and uses
Akaike’s information criterion (Brockwell and Davis, 1987) to select an
appropriate AR(p)-model under which the bootstrap replicates are gener-
ated. In (Theiler, Eubank, Longtin, Galdrikian and Farmer, 1992) a range
of alternative linear null hypotheses is considered. Especially, the random
sampling in the phase spectrum described in Section 2.4.1 of this reference
seems to be a relevant linear null hypothesis.

8.3 Confidence Limit for |PLDF (k)|

In Section 8.1 it is shown how bootstrapping can be used to construct an
approximative confidence limit for |LDF (k)|. There is some indication that
this limit can be used also for |PLDF (k)| if the same smoother is used for

calculation of LDF (k) and f̂k1(·), . . . , f̂kk(·) (Sections 4 and 6).

For (linear) autoregressive models of order p, with i.i.d. N(0, σ2) errors,
and fitted using N observations it holds approximately that the residual
sum of squares is distributed as σ2χ2(N − p) (Brockwell and Davis, 1987,
p. 251 and 254). Therefore if the true process is i.i.d. with variance σ2 the
following approximations apply when linear autoregressive models are used

SS0 ∼ σ2χ2(N − 1) (12)

SS0(k) ∼ σ2χ2(N − 2) (13)

SS0(1...k−1) ∼ σ2χ2(N − k) (14)

SS0(1...k) ∼ σ2χ2(N − k − 1) (15)

For N ≫ k the distribution of all four sums of squares are approximately
equal.

For locally weighted regression Cleveland and Devlin (1988) stated that
the distribution of the residual sum of squares can be approximated by
a constant multiplied by a χ2 variable, see also (Hastie and Tibshirani,
1990, Section 3.9). Furthermore, for generalized additive models Hastie
and Tibshirani (1990, Section 8.1) uses a χ2 distribution with degrees of
freedom equal to the number of observations minus a quantity depending
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on the flexibility of the smoothers used.

For these reasons we conjecture that when N ≫ k and when the same
smoother is used for LDF (k) and PLDF (k), as outlined in the beginning

of this section, then the sum of squares SS0, S̃S0(k), S̃S0(1...k−1), and

S̃S0(1...k) will follow approximately the same distribution.

This conjecture leads to approximate equality of means and variances of
the sums of squares. Since for both LDF (k) and PLDF (k) the compared
models differ by an additive term, estimated by the same smoother in both
cases, we also conjecture that for an i.i.d. process.

Cor[S̃S0(k), SS0] ≈ Cor[S̃S0(1...k), S̃S0(1...k−1)]. (16)

Using linearizations about the mean of the sums of squares it then follows
from the approximate equality of means that

E[|LDF (k)|] ≈ E[|PLDF (k)|], (17)

and from both conjectures that

V [|LDF (k)|] ≈ V [|PLDF (k)|]. (18)

Eqs. (17) and (18) tell us that the approximate i.i.d. confidence limit ob-
tained for |LDF (k)| can be used also as an approximate limit for |PLDF (k)|.
In Section 9 (Canadian lynx data) an example of the quality of the approx-
imation is given, and the mentioned arguments seems to be confirmed by
the bootstrap limits obtained in that example.
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9 Examples

9.1 Linear processes

Below it is briefly illustrated how LDF , PLDF , and PRSF behaves com-
pared to SACF and SPACF in case of simple linear processes. The AR(2)
process

Xt = 1.13Xt−1 − 0.64Xt−2 + et (19)

and the MA(2) process

Xt = et + 0.6983et−1 + 0.5247et−2 (20)

are considered, where in both cases {et} is i.i.d. N(0, 1).

Figures 4 and 5 contain plots based on 100 simulated values from (19) and
(20), respectively (the default random number generator of S-PLUS version
3.4 for HP-UX were used). Each figure show SACF and SPACF . The
remaining plots are LDF , PLDF , and PRSF for local linear smoothers
using a nearest neighbour bandwidth of 1.00 (2nd row), 0.50 (3rd row),
and 0.1 (bottom row). 95% confidence intervals are indicated by dotted
lines. The confidence intervals obtained for LDF are included on the plots
of PLDF .

For the calculation of PLDF and PRSF a convergence criterion (see Sec-
tion 6.1) of 0.01 and an iteration limit of 20 is used. Standard bootstrap
intervals are calculated for LDF under the i.i.d. hypothesis using 200 repli-
cates. For LDF the agreement with SACF is large for nearest neighbour
bandwidths 1.0 and 0.5. As expected, the range of the confidence interval
increases with decreasing bandwidth, and, using the smallest bandwidth,
it is almost not possible to reject the i.i.d. hypothesis.

When a nearest neighbour bandwidth of 1.0 is used PLDF agrees well with
SPACF for the lower half of the lags, whereas PLDF is exactly zero for
most of the larger half of the lags. Similar comments apply for nearest
neighbour bandwidths 0.5 and 0.1. This is due to the function estimates
being set equal to zero when the iteration limit is exceeded. The alternative
to PLDF , namely PRSF , behaves similar, but for lags two, or larger, the
absolute value of PRSF is smaller than for the absolute value of PLDF .
This is because PRSF addresses decreases in (normalized) prediction error
variances, whereas PLDF compares the fit relative to the fit when the last
lag is excluded.
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Figure 4: Plots of autocorrelation functions and their generalizations for
100 observations from the AR(2) process (19).
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Figure 5: Plots of autocorrelation functions and their generalizations for
100 observations from the MA(2) process (20).
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9.2 Non-linear processes

Three non-linear processes are addressed, namely (i) the non-linear autore-
gressive process (NLAR(1))

Xt =
1

1 + exp(−5Xt−1 + 2.5)
+ et, (21)

where {et} i.i.d. N(0, 0.12), and (ii) the non-linear moving average process
(NLMA(1))

Xt = et + 2 cos(et−1), (22)

where {et} i.i.d. N(0, 1) and (iii) the non-linear and deterministic process
described in Section 2, called DNLAR(1) in the following. For all three
cases 1000 observations are generated. The starting value for NLAR(1) is
set to 0.5 and for DNLAR(1) it is set to 0.8. Plots of the series NLAR(1)
and NLMA(1) are shown in Figure 6. The plot of DNLAR(1) is shown
in Figure 1.
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Figure 6: Plots of the series NLAR(1) (top) and NLMA(1) bottom.

For the calculation of LDF , PLDF , and NLDF a local linear smoother
with a nearest neighbour bandwidth of 0.5 is used. Actually, lagged scatter
plots indicate that a local quadratic smoother should be applied, at least for
NLMA(1) and DNLAR(1), but to avoid a perfect fit for the deterministic
series a local linear smoother is used. Confidence intervals are constructed
using standard normal intervals, since normal QQ-plots of the absolute
values of the 200 bootstrap replicates showed this to be appropriate. The
confidence interval obtained for LDF is included on the plots of PLDF .
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Figure 8 shows SACF , SPACF , LDF , and PLDF for the three series.
For NLMA(1) and DNLAR(1) the linear tools, SACF and SPACF , in-
dicate independence and LDF shows that lag dependence is present. From
these observations it can be concluded that NLMA(1) and DNLAR(1)
are nonlinear processes. From the plots of LDF and PLDF it cannot
be inferred whether NLMA(1) is of the autoregressive or of the moving
average type. For DNLAR(1) the autoregressive property is more clear
since PLDF drops to exactly zero after lag two. In case of DNLAR(1)
a more flexible smoother will result in values of LDF being significantly
different from zero for lags larger than two, while, for NLMA(1), LDF
will be close to zero for lags larger than one independent of the flexibility
of the smoother used. This is an indication of DNLAR(1) being of the
autoregressive type and NLMA(1) being of the moving average type.

For NLAR(1) the linear tools indicate that the observations come from
an AR(1) process. This is not seriously contradicted by LDF or PLDF ,
although LDF decline somewhat slower to zero than SACF . To investigate
if the underlying process is linear a Gaussian AR(1) model is fitted to the
data and this model is used as the hypothesis under which 200 (parametric)
bootstrap replicates of NLDF are generated. Figure 7 shows NLDF and a
95% standard normal interval, constructed under the hypothesis mentioned
above. A normal QQ-plot show that the absolute values of the bootstrap
replicates are approximately Gaussian. From the plot it is concluded that
the underlying process is not the estimated AR(1)-model, and based on
PLDF it is thus concluded that the observations originate from a non-
linear process of AR(1) type.
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Figure 7: NLDF for NLAR(1), including a 95% confidence interval under
the assumption of an AR(1) process (dotted).
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Figure 8: SACF , SPACF , LDF , and PLDF for series NLMA(1),
DNLAR(1), and NLAR(1) (columns, left to right).
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9.3 Canadian lynx data

Recently, Lin and Pourahmadi (1998) analyzed the Canadian lynx data
(Moran, 1953) using non-parametric methods quite similar to the methods
presented in this report. The data is included in the software S-PLUS
(version 3.4 for HP-UX) and described in (Tong, 1990, Section 7.2). In this
report a thorough analysis of the data will not be presented, but the data
will be used to illustrate how the methods suggested can be applied. As
in (Lin and Pourahmadi, 1998) the data is log10-transformed prior to the
analysis.

For the transformed data LDF , PLDF , and NLDF are computed using a
local quadratic smoother and nearest neighbour bandwidths of 0.5 and 1.
For LDF 200 bootstrap replicates are generated under the i.i.d. hypothesis
and QQ-plots indicate that standard normal intervals are appropriate. The
same apply for NLDF with the exception that the bootstrap replicates are
generated under the hypothesis that the AR(2) model of Moran (1953), also
described by Lin and Pourahmadi (1998), is true. Confidence intervals are
computed also for PLDF for the nearest neighbour bandwidth of 1.0. The
intervals are based one hundred bootstrap replicates of PLDF generated
under the i.i.d. hypothesis. QQ-plots indicate that the percentile method
should be applied to the absolute values of PLDF .

In Figure 9 plots of LDF , NLDF , and PLDF are shown. Dotted lines
indicates 95% confidence intervals under the i.i.d. hypothesis (LDF ) and
under the AR(2) model of Moran (1953) (NLDF ). The intervals obtained
for LDF are also shown on the plots of PLDF . Furthermore, for the
nearest neighbour bandwidth of 1.0, a 95% confidence interval for white
noise is included on the plot of PLDF (solid lines).

From the plots of LDF it is clearly revealed that the process is not i.i.d.
The plots of NLDF for a nearest neighbour bandwidth of 0.5 show hardly
any significant values, but when a nearest neighbour bandwidth of 1.0 is
used lags three and four show weak significance. This indicates that a small
departure from linearity is present in the data. Finally, the plots of PLDF
clearly illustrate that lag one and two are the most important lags and that
other lags are, practically, non-significant. In conclusion, an appropriate
model seems to be a non-linear autoregressive model containing lag one
and two, i.e. a model of the type (7) with k = 2.

Estimation in this model using local quadratic smoothers and a nearest
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neighbour bandwidth of 1.0 yields the results shown in Figure 10. The
response for lag one seems to be nearly linear. This aspect should be
further investigated. The results agree well with the results of Lin and
Pourahmadi (1998).
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Figure 9: Canadian lynx data (log10-transformed). Plots of LDF , NLDF ,
and PLDF using local quadratic smoothers and nearest neighbour band-
widths 0.5 (top row) and 1.0 (bottom row).

10 Lagged Cross Dependence

Given two time series {x1, . . . , xN} and {y1, . . . , yN} the Sample Cross Cor-
relation Function between processes {Xt} and {Yt} in lag k (SCCFxy(k))
is an estimate of the correlation between Xt−k and Yt. It is possible to gen-
eralized this in a way similar to the way LDF is constructed. Like SCCF
this generalization will be sensible to autocorrelation, or lag dependence,
in {Xt} in general. For SCCF this problem is (approximately) solved by
prewhitening (Brockwell and Davis, 1987, p. 402). However, prewhitening
is very dependent on the assumption of linearity, in that it relies on the
impulse response function from the noise being independent on the level.
For this reason, in the non-linear case, it is not possible to use prewhitening
and the appropriateness of the generalization of SCCF depend on {Xt}
being i.i.d.
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Figure 10: Non-linear additive autoregressive model for the log10-

transformed Canadian lynx data (f̂21(·) solid, f̂22(·) dotted). The estimate
of the constant term is 2.76 and the MSE of the residuals is 0.0414.

11 Final Remarks

The generalizations of the sample correlation functions reduce to their lin-
ear counterpart when the smoothers are replaced by linear models. Hence,
if a local linear smoother is applied an almost continuous transition from
linear to non-linear measures of dependence is obtainable via the bandwidth
of the smoother.

In the test for an i.i.d. process the alternative contain both linear and
non-linear models. The degree of departure from linearity that can be
detected by the test can be adjusted by selection of the flexibility of the
smoother. If, e.g., a local quadratic smoother with a nearest neighbour
bandwidth of 100% is applied, the test will have large power against an “al-
most quadratic” alternative. If, on the other hand, a more flexible smoother
is used, the power against an “almost quadratic” alternative will be lower.

Optimal bandwidth selection is not addressed in this report. However, the
methods can still be applied in this case, but the power against specific
alternatives cannot be adjusted.

The estimation in the non-linear additive autoregressive model, which is
used in the generalization of the sample partial autocorrelation function,
breaks down in case of concurvity. Hence, the lags enter the model sequen-
tially and in case of non-convergence of the backfitting iterations the last
lag is, essentially, excluded from all subsequent models, c.f. Section 6.1.
Furthermore, slow convergence have been observed in some cases. Hence,

24



the particular procedure is probably not optimal. The procedure may be
replaced by a modified BRUTO algorithm (Hastie and Tibshirani, 1990,
p. 262-3) in which the smoothing parameters are fixed but where the null
fit is still a possibility. However, due to the autoregression then e.g. lo-
cal regression smoothers will be non-linear and the approximation to the
degrees of freedom used in the BRUTO algorithm may not be applicable.
Inspired by the work of Ye (1998) the degrees of freedom may be defined as
the sum of the sensitivities of the fitted values with respect to the observa-
tions. Using this definition the degrees of freedom will equal the trace of the
smoother matrix plus a quantity involving partial derivatives of elements
of the smoother matrix with respect to the observations.

If the conditional mean of the series can be modelled the methods described
in this report can be applied to the series of squared residuals and the con-
ditional variance can, possibly, be addressed in this way. This approach is
quite similar to the approach by Tjøstheim and Auestad (1994, Section 5).

The first author has created an experimental S-PLUS library implement-
ing most of the methods described in this report, using local polynomial
smoothers. The software has been used for most of the numerical calcula-
tions in this report. A copy of the software can be obtained by contacting
the first author.
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