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1 IntroductionThe conditional parametric ARX-model is the linear ARX-model in whichthe parameters are replaced by smooth, but otherwise unknown, functionsof one or more explanatory variables. These functions are called coe�cient-functions. This class of models are used by Nielsen, Nielsen and Madsen(1997) to model a varying time delay. For on-line applications it is ad-vantageous to allow the function estimates to be modi�ed as data becomeavailable. Furthermore, because the system may change slowly over time,observations should be down-weighted as they become older. For this rea-son we propose an time-adaptive and recursive procedure, which is a com-bination of the adaptive recursive least squares method (Ljung, 1987) andlocally weighted polynomial regression (Cleveland and Devlin, 1988). In thepaper adaptive is used to denote that old observations are down-weighted,i.e. in the sense of adaptive in time.Non-adaptive recursive estimation of a regression function is a related prob-lem, which has been studied recently by Thuvesholmen (1997) using kernelmethods and by Vilar-Fern�andez and Vilar-Fern�andez (1998) using localpolynomial regression. Since these methods are non-adaptive one of theaspects considered in these papers is how to decrease the bandwidth asnew observations become available. This problem do not arise for adap-tive estimation since old observations are down-weighted and eventuallydisregarded as part of the algorithm.Hastie and Tibshirani (1993) considered varying-coe�cient models whichare similar in structure to conditional parametric models and have closeresemblance to additive models (Hastie and Tibshirani, 1990) with re-spect to estimation. However, varying-coe�cient models include addi-tional assumptions on the structure. Some speci�c time-series counter-parts of these models are the functional-coe�cient autoregressive models(Chen and Tsay, 1993a) and the nonlinear additive ARX-models (Chen andTsay, 1993b).In Section 2 a method for adaptive estimation in conditional parametricARX-models is proposed and it is shown that the method is a naturalextension of the adaptive recursive least squares method. A recursive for-mulation of the proposed method is derived in Section 3. Section 4 de-scribes a modi�cation of the method suitable e.g. for the case when theargument(s) of the functions exhibit cyclic behaviour. For non-adaptiveand non-recursive non-parametric regression nearest neighbour techniques2



are well known; in Section 5 this subject is considered in the adaptive andrecursive context. The method is summarized in Section 6. In Section 7the suggested method combining recursive least squares and local polyno-mial regression is studied by simulation. Some further topics, such as longterm 
uctuations, optimal bandwidths, and optimal forgetting factors, areconsidered in Section 8. Finally, we conclude on the paper in Section 9.2 Proposed MethodFor simplicity the method is outlined as a generalization of exponentialforgetting. However, the more general forgetting methods described byLjung (1987) could also serve as a basis.Using exponential forgetting and assuming observations at time s = 1; : : : ; tare available, the adaptive least squares estimate of the parameters � relat-ing the explanatory variables xs to the response ys using the linear modelEys = xTs � is found as�̂t = argmin� tXs=1 �t�s(ys � xTs �)2;where 0 < � < 1 is called the forgetting factor, see also (Ljung, 1987). Theestimate can be written explicitly in matrix notation�̂t = �XTt �tXt��1XTt �tyt; (1)where yt = [y1 : : : yt]T is a vector of observations up to time t, �t =diag(�t�1; �t�2; : : : ; �; 1) is a diagonal weighting matrix, and �nallyXt = 264 xT1...xTt 375is a (design) matrix in which row s is xs. When the estimator is written asthe local (time) weighted least squares solution (1) this suggests that theestimator may also be de�ned locally with respect to some other explana-tory variables ut. If the estimates are de�ned locally to some �xed point u,called the �tting point, the adaptive estimate corresponding to this point3



can be expressed as�̂t(u) = �XTt �tWu;tXt��1XTt �tWu;tyt; (2)where Wu;t = diag(wu(u1); : : : ; wu(ut)) is a diagonal weighting matrix inwhich the weights depend on the �tting point u and on the observationsus; s = 1; : : : ; t, see Appendix A. It is clear that (2) also may be writtenas �̂t(u) = argmin� tXs=1 �t�swu(us)(ys � xTs �)2: (3)Estimators like this can be applied in parallel to a number of �tting points(u) whereby the coe�cient-functions �(�) in the model Eys = xTs �(us) areestimated adaptively at a �nite number of possible values of the argument.Interpolation can be used if the estimated function values are needed forother values of the argument.In Section 3 it will be shown how the estimator (2) can be formulatedrecursively, but here we will brie
y comment on the estimator and its rela-tions to non-parametric regression. From (3) it is seen that locally to u thefunctions �(u) are approximated by constants. A special case is obtainedif X is a column of ones, then simple calculations show that�̂t(u) = Pts=1 �t�swu(us)ysPts=1 �t�swu(us) ; (4)If � = 1 this is a kernel estimator of �(�) in Eys = �(us), cf. (H�ardle, 1990,p. 30). For this reason (4) is called an adaptive kernel estimator of �(�)and the general estimator (2) may be called an adaptive local constant orkernel estimator of the coe�cient-functions �(�) in the conditional para-metric model Eys = xTs �(us). If lagged values of the dependent variableare included in xs the model will be a conditional parametric ARX-model(CPARX-model), see also (Nielsen et al., 1997).The local constant approximation is in general not very appropriate andlocal polynomial approximations will often be more suitable, see (Nielsenet al., 1997). In Appendix A it is shown how non-adaptive estimationin Eys = xTs �(us) can be performed using local polynomial approxima-tions of the coef�cient-functions and that the method corresponds to localconstant estimation after rede�ning Xt in (2). For this reason the adap-tive local constant estimator described above can be used to implement4



a general adaptive local polynomial estimator of the coe�cient-functions�(�). Therefore, methods aiming at adaptive kernel estimation and adap-tive local polynomial estimation of a single regression function or of a setof coe�cient-functions can all be described as (2).3 Recursive formulationFollowing Ljung (1987) the adaptive estimates (2) can be found recursivelyas �̂t(u) = �̂t�1(u) + wu(ut)R�1u;txt hyt � xTt �̂t�1(u)i (5)and Ru;t = �Ru;t�1 + wu(ut)xtxTt : (6)It is seen that existing numerical procedures can be applied in parallel toa number of �tting points u, by replacing xt and yt with xtpwu(ut) andytpwu(ut), respectively. Note that xTt �̂t�1(u) is a predictor of yt locallywith respect to u and for this reason it is used in (5). To predict yt apredictor like xTt �̂t�1(ut) is appropriate.4 Modi�ed updating formulaWhen ut is far from the particular �tting point u it is clear from (5) and (6)that �̂t(u) � �̂t�1(u) and Ru;t � �Ru;t�1, i.e. old observations are down-weighted without new information becoming available. This may result inabruptly changing estimates if u is not visited regularly, since the matrixR is decreasing exponentially in this case. Since we regard this as a seriouspractical problem it is proposed to modify (6) to ensure that the past isweighted down only when new information becomes available, i.e.Ru;t = �v(wu(ut);�)Ru;t�1 + wu(ut)xtxTt ; (7)where v(� ;�) is a nowhere increasing function on [0; 1] ful�lling v(0;�) =1=� and v(1;�) = 1. Note that this requires that the weights span the5



interval ranging from zero to one. In this paper we consider only the linearfunction v(w;�) = 1=�� (1=�� 1)w;for which (7) becomesRu;t = (1� (1� �)wu(ut))Ru;t�1 + wu(ut)xtxTt :It is natural to denote 1� (1� �)wu(ut) the e�ective forgetting factor forpoint u at time t, �ueff (t).5 Nearest neighbour bandwidthA bandwidth speci�ed according to the nearest neighbour principle is oftenused as a tool to vary the actual bandwidth used with the local density ofthe data. Assume in the following discussion that ut is a stochastic variableand that the pdf f(�) of ut is known and constant over t. Based on anearest neighbour bandwidth the actual bandwidth can then be calculatedfor a number of �tting points u placed within the domain of f(�) andused to generate the weights wu(ut) used in the previous sections, see alsoAppendix A. The actual bandwidth }(u) corresponding to the point u willbe related to the nearest neighbour bandwidth � by� = ZDu f(z)dz; (8)where D u = fz 2 Rd j jjz � ujj � }(u)g is the neighbour-hood, d is thedimension of u, and jj � jj is the Euclidean norm. In applications the densityf(�) is often unknown. However, the selected model is based on an anal-ysis which in turn is based on a set of observations. Hence, f(�) can beestimated, e.g. by the empirical pdf.In order to select an appropriate value for � the e�ective number of obser-vations used for estimation must be considered. In Appendix B it is shownthat under certain conditions~�u = 11�E[�ueff (t)] = 1(1� �)E[wu(ut)] (9)6



is a lower bound on the e�ective number of observations (in the directionof time) corresponding to a point u. When selecting � it is then naturalto require that the number of observations within the bandwidth, i.e. �~�u,is su�ciently large to justify the complexity of the model and the orderof the local polynomial approximations. Of course � could also be basedon a non-adaptive analysis of the data. In this case �~�u should be usedto verify that the average forgetting factor is large enough. By assuminga stochastic process for futg the e�ective number of observations in thedirection of time, as described by the process f�u(t)g in Appendix B, canbe simulated whereby the validity of ~�u can be addressed.For ut � N(0; 1), � = 0:99, and when using the tricube weight-function (cf.Appendix A) the e�ective number of observations within the bandwidth,�~�u, is displayed in Figure 1. It is seen that �~�u depends strongly on the�tting point u but only moderately on �. Figure 2 shows �~�u for � rangingfrom 0.90 to 0.99 for u = 0 and u = 2, when ut � N(0; 1). From this �gureit is seen that, given the �tting point, �~�u is almost solely determinedby �. In conclusion, for the example considered, the e�ective forgettingfactor �ueff (t) will be a�ected by the nearest neighbour bandwidth, so thatthe e�ective number of observations within the bandwidth will be stronglydependent on �, but only weakly dependent on the bandwidth (�). Theratio between the rate at which the weights on observations goes to zero inthe direction of time and the corresponding rate in the direction of ut willbe determined by �.
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Figure 1: E�ective number of observations within the bandwidth (�~�u(u))for � = 0:1; : : : ; 0:9 and � = 0:99. 7
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λFigure 2: E�ective number of observations within the bandwidth (�~�u(u))for u = 0 (top) and u = 2 (bottom), and for � = 0:1; : : : ; 0:9.From Figure 1 it is tempting to infer that the adaptive estimates will havelarger variance near the center of the distribution of ut than in the tailsof the distribution. However, although nearest neighbour bandwidths areused, local polynomial estimates have increased variance in border regionsand this variance depend on the degree of the local approximation used.Therefore, some local approximations may result in increased variance nearthe center of the distribution, whereas other local approximations mayresult in increased variance in border regions.These aspects are exempli�ed by simulations using the ARX-modelyt = 0:9yt�1 + xt�1 + et; (10)8



where, t = 1; : : : ; 2500, fxtg is the input process, fytg is the output pro-cess, and fetg is a white noise error process. In the simulations fetg is iidN(0; 1 � 0:92) and fxtg is standard Gaussian white noise. Furthermore,the futg process is simulated as standard Gaussian white noise. Hereafter,estimation is performed using the modi�ed method (4), assuming the modelyt = a(ut�1)yt�1 + b(ut�1)xt�1 + et; (11)where a(�) and b(�) are the coe�cient-functions. A nearest neighbour band-width (�) of 0.7 is used, and � = 0:99.Using the tricube weight function (cf. Appendix A) and local quadraticapproximations, the traces of the estimates of a(u) and b(u) are displayedin Figure 3. The traces indicate that the variance increases as the �ttingpoint moves away from the center of the distribution, although Figure 1shows that the e�ective number of observations within the bandwidth in-creases with the distance from the center of the distribution. Figure 4shows the empirical standard deviation of the last 500 values of the esti-mates of b(�) for �tting points between -4 and 4 when local constant, linear,and quadratic approximations are used. The local constant approximationresult in increased variance near the center of the distribution as comparedto the border regions, the local linear approximation seems to have ap-proximately constant variance over �tting points, and the local quadraticapproximation clearly shows increased variance in border regions. Notethat, although from the �gure the local constant approximation seems su-perior, it may result in excess bias when the true function is not a constant,see also (Nielsen et al., 1997).

0.
0

1.
0

0.
0

1.
5

0 500 1000 1500 2000 2500

TimeFigure 3: Traces of local quadratic adaptive estimates (� = 0:7 and � =0:99) of a(�) (top) and b(�) (bottom) for u = �4 (dotted) and u = 0 (solid).9



Fitting point (u)

-4 -2 0 2 4

0.
0

0.
04

0.
10

.

Constant
Linear
Quadratic

Figure 4: Empirical standard deviation of the last 500 adaptive estimatesof b(�), for the local quadratic approximation with � = 0:7 and � = 0:99.6 Summary of the methodTo clarify the method described above the actual algorithm is brie
y de-scribed in this section. As opposed to the previous part of the paper thedistinction between the local constant and the local polynomial estimates,as described in Appendix A.2, will be made explicit. Thus, in this sectionwe assume that at each time step measurements of the output y and thetwo sets of inputs x and u are received. The aim is to obtain adaptiveestimates of the coe�cient-functions in the model Eyt = xTt �(ut). This isaccomplished by applying the method described in the previous part of thepaper to the model Eyt = zTt �(ut), where zt is de�ned by xt and ut, see(16).Besides � in (4), prior to the application of the algorithm a number of�tting points u(j); j = 1; : : : ; nfp in which the coe�cient-functions areto be estimated have to be selected. Furthermore the bandwidth associ-ated with each of the �tting points }(j); j = 1; : : : ; nfp and the degrees ofthe approximating polynomials d(1); : : : ; d(p) have to be selected, wherep denotes the number of coe�cient-functions. Here the degree of the ap-proximating polynomial for a particular coe�cient-function will be �xedacross �tting points. Finally, initial estimates of the coe�cient-functionsin the model corresponding to local constant estimates, i.e. �̂0(u(j)) below,must be chosen. Also, the matrices Ru(j);0 must be chosen. One possibil-10



ity is diag(�; : : : ; �), where � is a small positive number, see also the �rstparagraph in Section 8.The selection of the degrees of each of the approximating polynomials andof �tting points and bandwidths associated with each of these requires someprior knowledge about the process futg and about the smoothness of thecoe�cient-functions. The following considerations should be addressed:� The placement of the extreme �tting points should be related to therange (region) spanned by futg, a 95% con�dence region of ut willoften be appropriate.� The distance between the �tting points should be related to thesmoothness of the coe�cient functions { the interpolation methodused between �tting points should not in
uence the result to anysigni�cant degree.� The degree of the approximating polynomials together with band-width should be related to the smoothness of the coe�cient functions{ the approximation must be appropriate within the bandwidth.For simplicity, in the following description of the algorithm it will be as-sumed that a tricube weight function and a spherical kernel is used, cf.Appendix A. Furthermore it will be assumed that Ru;t can be inverted forall �tting points. Under these assumptions the algorithm can be describedas:For each time t: Loop over the �tting points u(j); j = 1; : : : ; nfp and foreach �tting point:� Calculate the weight:wu(j) (ut) = (1� (jjut � u(j)jj=}(j))3)3, if jjut � u(j)jj < }(j) and zerootherwise.� Find the e�ective forgetting factor:�(j)eff (t) = 1� (1� �)wu(j) (ut).� Construct the explanatory variables corresponding to local constantestimates as in (16) of Appendix A.2:zTt = [xt1pTd(1)(ut) : : : xtppTd(p)(ut)].� Update Ru(j) ;t�1 using (4):Ru(j) ;t = �(j)eff (t)Ru(j) ;t�1 + wu(j) (ut)ztzTt .11



� Update �̂t�1(u(j)) using (5):�̂t(u(j)) = �̂t�1(u(j)) + wu(j) (ut)R�1u(j) ;tzt hyt � zTt �̂t�1(u(j))i.� Calculate the local polynomial estimates of the coe�cient-functionsas in (17) of Appendix A.2:�̂T (u(j)) = [pTd(1)(u(j))�̂1(u(j)) : : :pTd(p)(u(j))�̂p(u(j))].The algorithm could also be implemented using the matrix inversion lemmaas in (Ljung and S�oderstr�om, 1983).7 SimulationsThe methods of updatingR, cf. (6) and (4), are studied by simulation usingthe model yt = a(t; ut�1)yt�1 + b(t; ut�1)xt + et; (12)where fxtg is the input process, futg is the process controlling the co-e�cients, fytg is the output process, and fetg is a white noise standardGaussian process. The coe�cient-functions are simulated asa(t; u) = 0:3 + (0:6� 1:5N t) exp�� (u� 0:8N t)22(0:6� 0:1N t)2�and b(t; u) = 2� exp�� (u+ 1� 2N t)20:32 ;�where t = 1; : : : ; N and N = 5000, i.e. a(t; u) ranges from -0.6 to 0.9 andb(t; u) ranges from 1 to 2. The functions are displayed in Figure 5. Asindicated by the �gure both coe�cient functions are based on a Gaussiandensity in which the mean and variance varies linearly with time.Adaptive estimates of the functions a() and b() are then found using theproposed procedure with the modelyt = a(ut�1)yt�1 + b(ut�1)xt + et: (13)For the adaptive estimation �tting points ranging from -2 to 2 in stepsof 0.2 are considered. Initial estimates of the coe�cient-functions are set12
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uctuations: If futg exhibits long-term 
uctuations, e.g.annual 
uctuations, the method can still be applied. However, if the usualapproach of setting the initial estimates to zero is applied the time-spanuntil the estimates are appropriate for all u will be long, maybe one year.Therefore, in case of long-term 
uctuations in futg it is crucial to use infor-mation from the analysis leading to the considered model. This informationshould be provided both in terms of �̂0(u) and Ru;0.Non-compact domain: If the domain of the pdf of ut is non-compactwe propose for on-line applications that �tting points u are selected withina reasonable range of the center of the distribution. If function estimatesare needed outside this range we may use the estimates corresponding tothe nearest point u used for estimation.E�ective number of observations: In Figure 1 it is shown how thee�ective number of observations within the bandwidth �~�u varies with19



the �tting point u when ut � N(0; 1). To make �~�u independent of the�tting point the weights wu(ut) may be multiplied by a strictly positivefactor, since this will not a�ect the estimates in the non-adaptive case.Alternatively, � can be varied with the �tting point. If the weights arereplaced by wu(ut)=E[wu(ut)] then �~�u = �=(1��) and it is seen that ~�u =1=(1��) can be interpreted as the memory time constant T0. If � is variedwith the �tting point as �(u) = 1�1=(T0E[wu(ut)]) then ~�u = T0. In bothcases the e�ective forgetting factor at time t is 1� wu(ut)=(T0E[wu(ut)])and consequently the approaches are equivalent. For practical applicationsE[wu(ut)] must be estimated. Direct estimation by averaging observedweights will result in highly variable estimates, especially for �tting pointsplaced in the tails of the distribution of ut. Since also the expressionused for calculation of ~�u (9) is an approximation (see Appendix B) it isproposed to estimate the pdf of ut based on a parametric family which �tsthe data reasonably well. Consequently, in many cases the Gaussian familyof distributions is appropriate.Optimal bandwidth and forgetting factor: So far in this paper ithas been assumed that the bandwidths used over the range of ut is derivedfrom the nearest neighbour bandwidth � and it has been indicated how itcan be ensured that the average forgetting factor is large enough.However, the adaptive and recursive method is well suited for forward val-idation (Hjorth, 1994) and hence tuning parameters can be selected byminimizing, e.g. the root mean square of the one-step prediction error (us-ing observed ut and xt to predict yt, together with interpolation between�tting points to obtain �̂t�1(ut)).There are numerous ways to de�ne the tuning parameters. A simple ap-proach is to use (�; �), cf. (4) and (8). A more ambiguous approach is touse both � and } for each �tting point u. Furthermore, tuning parameterscontrolling scaling and rotation of us may also be considered.If n �tting points are used this amounts to 2n, or more, tuning parameters.To make the dimension of the (global) optimization problem independentof n and to have �(u) and }(u) vary smoothly with u we may choose torestrict �(u) and }(u), or appropriate transformations of these (logit for� and log for }), to follow a spline basis (de Boor, 1978; Lancaster andSalkauskas, 1986). This is similar to the smoothing of spans described byFriedman (1984). 20



Local time-polynomials: In this paper local polynomial approxima-tions in the direction of time is not considered. Such a method is proposedfor usual ARX-models by Joensen, Nielsen, Nielsen and Madsen (1999).This method can be combined with the method described here and willresult in local polynomial approximations where cross-products betweentime and the conditioning variables (ut) are excluded. It is, however, stillan open question if the outlined extension are applicable from a practicalpoint of view. Since the method described in this paper down weights ob-servations both in the direction of time and ut it requires a relatively largeaverage forgetting factor. Hence a simultaneous local polynomial approx-imation of the development over time will require the forgetting factor tobe increased further, possibly resulting in a method which is non-adaptivefor practical purposes. However, if the initial values of the recursions arecarefully selected the approach may prove valuable.Adaptive estimation in additive models: Consider the additive model(Hastie and Tibshirani, 1990)Eys = �+Xi fi(ui;s); (14)where, in principle, each summand may be a conditional parametric model.Consequently, the varying-coe�cient models of Hastie and Tibshirani (1993)are also included in (14).Below a method for adaptive and recursive estimation in models like (14)is proposed. The method is inspired by the back�tting algorithm (Hastieand Tibshirani, 1990). At time step t the following steps are performed:1. �̂t is obtained through adaptive and recursive updating of (the con-stant) �̂t�1 using yt �Pi f̂i;t�1(ui;t) as the dependent variable.2. f̂j;t is obtained equivalently, i.e. as described in this paper, but usingyt� �̂t�1�Pi 6=j f̂i;t�1(ui;t) as the dependent variable. Alternatively�̂t could be used instead of �̂t�1.3. f̂j;t is adjusted by subtractingRmaxfujgminfujg f̂j;t(z)dz=(maxfujg�minfujg), and similarly for multivari-ate u. 21



In step 3 the minimum and maximum refers to the minimum and maximumof the �tting points. The range of integration is not very important butstep 3 is important to ensure that the level of yt can only be handled by� in the model. Furthermore, step 3 is not required for varying-coe�cientmodels. Considering step 2 it is natural to use the most recent estimates atevery instant of the algorithm. In this case the order in which we considerthe functions to be estimated may be important.The algorithm amounts to performing the iterations in the back�tting algo-rithm distributed over time steps resembling the recursive prediction errormethod (Ljung, 1987) in which a single Newton-Raphson iteration is per-formed at each time step.9 Conclusion and DiscussionThe conditionally parametric ARX-model (CPARX-model) is a conven-tional ARX-model in which the parameters are replaced by smooth func-tions of a (low-dimensional) input process. One possible application of thesemodels is the modelling of varying time delays, cf. (Nielsen et al., 1997).For on-line applications the function estimates should be allowed to adaptto slow changes in the true, but unknown, functions. Although, otherpractical solutions may exist, the recursive approach is particularly use-ful in that a fairly small computational e�ort is required each time anobservation becomes available. In this paper a method for adaptive andrecursive estimation in CPARX-models are proposed. The method can beseen as a generalization or a combination of adaptive recursive least squares(Ljung, 1987), local polynomial regression (Cleveland and Devlin, 1988),and conditional parametric �ts (Anderson, Fang and Olkin, 1994).For some applications it may be possible to specify global polynomial ap-proximations to the coe�cient-functions of a CPARX-model. In this situa-tion the adaptive recursive least squares method can be applied for trackingthe parameters from which the estimates of the coe�cient-functions can becalculated. However, if the argument(s) of the coe�cient-functions onlystays in parts of the space corresponding to the possible values of the argu-ment(s) for longer periods this may seriously a�ect the coe�cient-functionsfor other values of the argument(s), in that it corresponds to extrapolationusing a �tted polynomial. This problem is e�ectively solved using thenon-parametric model in combination with the modi�ed updating formula22



suggested in this paper.Adaptive and recursive estimation in CPARX-models will require a rela-tively large forgetting factor as compared to ARX-models. Furthermore,during part of the time, the function estimates may be updated for somevalues of their argument(s) while the estimates are left unchanged for othervalues. Therefore, for some practical applications, it will be crucial to ini-tialize the recursions both in terms of the estimates and the precision hereof.The modi�ed updating formula bear resemblance selective forgetting (Ljung,1987). Instead of using a forgetting factor of one for observations with zeroweight a number slightly lower than one may be chosen. For applicationswhere the functions to be estimated change substantially at some valuesof their argument, while these values are not visited for longer periods,this may be applicable since it will allow for faster adaption at the cost ofincreased variance of the estimates in these situations.A Local polynomial estimationIn this appendix non-adaptive estimation in conditional parametric modelsis described. The model is of the formys = xTs �(us) + es; s = 1; : : : ; N; (15)where the response ys is a stochastic variable, us and xs are explanatoryvariables, es is i.i.d. N(0; �2), �(�) is a vector of unknown but smooth func-tions with values in R, and s = 1; : : : ; N are observation numbers. Whenus is constant across the observations the model reduces to an ordinaryparametric linear model.A.1 Local constant estimatesEstimation in (15) aims at estimating the functions �(�) within the spacespanned by the observations of us; s = 1; : : : ; N . The functions are onlyestimated for distinct values of the argument u. Below u denotes oneof these �tting points and �̂(u) denotes the estimates of the coe�cient-functions, when the functions are evaluated at u.One solution to the estimation problem is to replace �(us) in (15) with aconstant vector �u and �t the resulting model locally to u, using weighted23



least squares. Below two similar methods of allocating weights to the obser-vations are described, for both methods the weight function W : R0 ! R0is a nowhere increasing function, R0 denotes the non-negative real numbers.In this paper the tricube weight functionW (u) = � (1� u3)3; u 2 [0; 1)0; u 2 [1;1)is used. Hence, W : R0 ! [0; 1].In the case of a spherical kernel the weight on observation s is determinedby the Euclidean distance jjus � ujj between us and u, i.e.wu(us) =W � jjus � ujj}(u) � :A product kernel is characterized by distances being calculated for onedimension at a time, i.e.wu(us) =Yj W � juj;s � uj j}(u) � ;where the multiplication is over the dimensions of u. The scalar }(u) > 0is called the bandwidth. If }(u) is constant for all values of u it is denoteda �xed bandwidth. If }(u) is chosen so that a certain fraction (�) of theobservations ful�ll jjus � ujj � }(u) it is denoted a nearest neighbourbandwidth. If u has dimension of two or larger, scaling of the individualelements of us before applying the method should be considered, see e.g.(Cleveland and Devlin, 1988). Rotating the coordinate system in which usis measured may also be relevant.A.2 Local polynomial estimatesIf the bandwidth }(u) is su�ciently small the approximation of �(�) as aconstant vector near u is good. This implies that a relatively low numberof observations is used to estimate �(u), resulting in a noisy estimate orlarge bias if the bandwidth is increased. See also the comments on kernelestimates in (Anderson et al., 1994).It is, however, well known that locally to u the elements of �(�) may beapproximated by polynomials, and in many cases these will be good ap-proximations for larger bandwidths than those corresponding to local con-stants. Local polynomial approximations are easily included in the method24



described. Let �j(�) be the j'th element of �(�) and let pd(j)(u) be a columnvector of terms in the corresponding d-order polynomial evaluated at u, iffor instance u = [u1 u2]T then p2(u) = [1 u1 u2 u21 u1u2 u22]T . Furthermore,let xs = [x1s : : : xps]T . WithzTs = hx1spTd(1)(us) : : : xjspTd(j)(us) : : : xpspTd(p)(us)i (16)and �̂T (u) = [�̂T1 (u) : : : �̂Tj (u) : : : �̂Tp (u)];where �̂j(u) is a column vector of local constant estimates at u correspond-ing to xjspd(j)(us), estimation is handled as described in Section A.1, but�tting the linear modelys = zTs �u + es; i = 1; : : : ; N;locally to u, indicated by the subscript parameter-vector.. Hereafter theelements of �(u) are estimated by�̂j(u) = pTd(j)(u) �̂j(u); j = 1; : : : p: (17)When xs = 1 for all s, i.e. p = 1, this method is identical to the methodby Cleveland and Devlin (1988), with the exception that they center theelements of us used in pd(j)(us) around u and so pd(j)(us) must be recal-culated for each value of u considered.B E�ective number of observationsUsing the modi�ed updating formula, as described in Section 4, the esti-mates at time t can be written as�̂t(u) = Argmin� tXs=1 �(t; s)wu(us)(ys � xTs �)2;where �(t; t) = 1;25



and, for s < t �(t; s) = tYj=s+1 �ueff (j) = �ueff (t)�(t � 1; s):It is then natural to de�ne the e�ective number of observations (in thedirection of time) as�u(t) = 1Xi=0 �(t; t� i) (18)= 1 + �ueff (t) + �ueff (t)�ueff (t� 1) + : : :Suppose that the �tting point u is chosen so that E[�u(t)] exists. Con-sequently, when f�ueff (t)g is i.i.d. and when ��u denotes E[�ueff (t)], theaverage e�ective number of observations is��u = 1 + ��u + ��2u + : : : = 11� ��u :When f�ueff (t)g is not i.i.d., it is noted that since the expectation operatoris linear, E[�u(t)] is the sum of the expected values of each summand in(18). Hence, E[�u(t)] is independent of t if f�ueff (t)g is strongly stationary,i.e. if futg is strongly stationary. From (18)�u(t) = 1 + �ueff (t)�u(t� 1)is obtained, and from the de�nition of covariance it then follows that��u = 1 + Cov[�ueff (t); �u(t� 1)]1� ��u � 11� ��u ; (19)since 0 < � < 1 and assuming that the covariance between �ueff (t) and�u(t � 1) is positive. Note that if the process futg behaves such that if ithas been near u for a longer period up to time t� 1 it will tend to be nearu at time t also a positive covariance is obtained. It is the experience of theauthors that such a behaviour of a stochastic process is often encounteredin practice.As an alternative to the calculations above �ueff (t)�u(t � 1) may be lin-earized around ��u and ��u. From this it follows that when the variance of�ueff (t) and �u(t� 1) is small then��u � 11� ��u :26
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