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Summary

Methods for on-line prediction of heat consumption in district heating systems hour by
hour for horizons up to 72 hours are considered in this report. Data from the district
heating system Vestegnens Kraftvarmeselskab I/S is used in the investigation. During
the development it has been assumed that meteorological forecasts are available on-line.
Such a service has recently been introduced by the Danish Meteorological Institute.
However, actual meteorological forecasts has not been available for the work described
here. Assuming the climate to be known the mean absolute relative prediction error
for 72 hour predictions is 3.8% for data in November, 1995 (17% when no climate
information is used). However, at some occasions large deviations occur and in Jan-
uary 1996 a value of 5.5% is obtained. The relative prediction error tends to increase
with decreasing heat consumption. Approaches to implementation are suggested in a
separate chapter of the report.

The methods of prediction applied are based on adaptive estimation, whereby the
methods adapt to slow changes in the system. This approach is also used to track
the transition from e.g. warm to cold periods. Due to different preferences of the
households to which the heat is supplied this transition is smooth. By simulation,
combined with theory known from the literature, it is shown that it is crucial to use
the actual meteorological forecasts and not the observations of climate when estimating
the parameters of the model. To our knowledge, this is somewhat contrary to practice.

The work presented is a demonstration of the value of the so called gray box approach
where theoretical knowledge about the system under consideration is combined with
information from measurements performed on the system in order to obtain a math-
ematical description of the system. Furthermore it is also demonstrated that it is
important to select the estimation method depending on the particular application.
Maximum likelihood estimates are often considered optimal, but here they prove to be
inferior to output error estimates for long-term prediction. This is because the optimal-
ity of the maximum likelihood estimates are related to the properties of the estimates,
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whereas for prediction purposes the properties of the prediction errors should be in
focus.



Resumé

Nærværende rapport beskriver metoder til on-line prædiktion af det timevise varme-
forbrug i fjernvarmesystemer for tidshorisonter p̊a op til 72 timer. Data fra Vestegnens
Kraftvarmeselskab I/S er blevet anvendt i undersøgelsen. Det er en forudsætning for
anvendelse af den udviklede metode, at meteorologiske forudsigelser er tilgængelige on-
line, og en s̊adan service er for relativt nylig blevet oprettet af Danmarks Meteorologiske
Institut. Dog har faktiske meteorologiske forudsigelser ikke været tilgængelige for ar-
bejdet beskrevet i denne rapport. N̊ar klimaet antages kendt, bliver gennemsnittet af
den relative absolutte prædiktionsfejl 3.8% for november 1995 (17% n̊ar information om
klimaet ikke bruges). Store afvigelser herfra forekommer dog, og f.eks. i januar 1996 f̊as
værdien 5.5%. Den relative prædiktionsfejl tenderer til at stige med aftagende varme-
forbrug. Forslag til implementeringer af metoden beskrives i et selvstændigt kapitel af
rapporten.

De anvendte prædiktionsmetoder er baseret p̊a adaptiv estimation, hvorved metoden
automatisk tilpasses langsomme ændringer i systemet. P̊a denne måde identificeres
overgange f.eks. fra varme til kolde perioder ogs̊a. Ved en kombination af simulation
og teori kendt fra litteraturen vises det i rapporten, at det er nødvendigt at bruge
de faktiske meteorologiske forudsigelser og ikke de faktiske observationer af klima,
n̊ar parametrene i modellen estimeres. S̊avidt vi ved, er dette i nogen grad ikke i
overensstemmelse med praksis.

Det præsenterede arbejde demonstrerer værdien af den s̊akaldte gray box metode, hvor
teoretisk viden om det betragtede system kombineres med målinger fra systemet for at
opn̊a en matematisk beskrivelse af dette. Det demonstreres ogs̊a, at det er vigtigt at
vælge estimationsmetode afhængig af den faktiske anvendelse. Maksimum likelihood
estimater betragtes ofte som værende optimale. N̊ar langtidsforudsigelser betragtes,
viser det sig dog her at være bedre at bruge output error estimater. Dette skyldes, at
optimaliteten af maksimum likelihood estimater er relateret til disses egenskaber, hvor
man af hensyn til prædiktion bør fokusere p̊a prædiktionfejlenes egenskaber.
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Chapter 1

Introduction

This report deals with methods for on-line prediction of the heat load hour by hour in
district heating systems where it is assumed that meteorological forecasts are available
on-line. Such a service has recently been introduced by the Danish Meteorological In-
stitute under the term “SAFE-Energy” (Petersen & Hilden 1999), where the forecasts
are provided via the Internet. The prediction horizons considered in this report range
from 1 to 72 hours, but the maximal prediction horizon are determined by a combina-
tion of the quality/existence of meteorological forecasts and the requirements on the
precision of the predictions of heat load.

For prediction horizons up to 24 hours on-line prediction of heat consumption is imple-
mented in the PRESS software (Madsen & Nielsen 1997). The prediction methods used
in PRESS were developed at a time when on-line meteorological forecast were not read-
ily available and therefore the software implicitly generates predictions of the climate
variables. However, these predictions do only take into account local climate condi-
tions and the methods used are extremely simple compared to meteorological models.
Hence, it is beyond doubt that meteorological forecasts will improve the quality of the
predictions of heat consumption.

The purpose of the work described here is to derive methods for on-line prediction of the
heat load in district heating systems, which can be implemented on e.g. a normal PC.
The predictions are based on information from a SCADA system and meteorological
forecasts via the Internet. Furthermore, local observations of climate variables from a
climate station might be valuable, especially for short term prediction. The methods
must be easy to apply in practice and therefore they should be able to adapt to slow
changes in the district heating system. Such methods also imply that the system need
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2 CHAPTER 1. INTRODUCTION

not be calibrated each time it is installed at a new location, but it might be beneficial
to tune some parameters related to the adaptive ability.

The approach taken for constructing such methods is first to use relations known
from the theory of heat transfer to arrive at an initial model structure. Based on
this structure, data in combination with statistical methods is used to from an actual
mathematical model of the heat consumption. Finally, based on this model adaptive
methods of prediction are investigated.

In Chapter 2 the data used and the preparation of the data are described. The sta-
tistical methods are described in Chapter 3. Chapter 4 deals with the initial model
structure, which are then used together with the data in Chapter 5 to derive the final
model. Adaptive methods of prediction are considered in Chapter 6, while Chapter 7
presents two alternative suggestions for implementation. Finally, in Chapter 8 the
results obtained are outlined and discussed.

The majority of readers the will probably be most interested in the conclusion and
discussion in Chapter 8 and in the results presented in Chapters 6 and 7 in which the
prediction methods are investigated and suggestions for implementation are presented.
To obtain a detailed understanding of the work and the selected methods the reader
should also read Chapters 4 and 5 in which the basic model structure is investigated.
Furthermore, the description of the data in Chapter 2 might be relevant. Readers
not familiar with the statistical methods may also want to consult Chapter 3, but it
is noted that references to specific sections in this chapter is used extensively in the
report. In Section 3.5 simple summary statistics are described. The conclusion and
discussion in Chapter 8 lists some possible extensions of the prediction method.



Chapter 2

Data

The data used in this report consists of hourly measurements of heat consumption and
climate for the period July, 1995 to June, 1996. Furthermore, data on the types of
the individual days are used. The measurements of heat consumption are supplied by
Henrik R. Hansen, Vestegnens Kraftvarmeselskab I/S (VEKS) and consists of the heat
supplied from the VEKS transmission system to the local distributors over the past
hour. The unit of measurement is GJ and since the measurement is related to the past
hour the unit GJ/h will be used in this report. The climate measurements consists of
recordings of the air temperature in oC, wind speed in m/s, and global radiation in
W/m2 as averages over the past ten minutes up to the full hour. The measurements
are performed at Højbakkeg̊ard in Taastrup by the Department of Agricultural Sci-
ences, The Royal Vet. and Agric. Univ., Copenhagen (Jensen 1996). The wind speed
measurements are performed two meters above ground level, which explains the rela-
tive low recordings. With the purpose of taking into account the different pattern of
consumption for different types of days these are grouped into “working”, “half-holy”,
and “holy” days. Half-holy days includes Saturdays. The data has been supplied by
Jørgen Olsen, Elkraft System, Ballerup.

Plots of the raw data are included in Appendix A starting on page 113. The plot of the
raw measurements of heat consumption shown in Figure A.1 reveals some problems
with the quality of the data. For the climate data shown in Figure A.2 the quality of
data seems to be higher. However, on plots such as those just mentioned only gross
outliers can be detected in that e.g. a diurnal variation in the measurements will tend
to hide some outliers of moderate size. For this reason the data are checked for out-
liers more thoroughly in Section 2.1, and in general values found to be outliers will
be treated as missing values. For some of the methods applied in this report missing
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4 CHAPTER 2. DATA

values can not be handled satisfactory therefore series where the missing values (and
outliers) are replaced by appropriate values are also generated. This is described in Sec-
tion 2.2. Finally, in Section 2.3 it is explained how the global radiation is transformed
to a variable presumably more adequate for describing the amount of solar radiation
entering into the buildings. If not mentioned otherwise the date and time values used
in this report refers to the standard time used in Denmark, i.e. one hour ahead of GMT
and one hour of daylight savings from the last Sunday in March until the last Sunday
in September (October for 1996 and onwards). However, in this chapter the climate
variables are investigated using time values in which daylight savings are disregarded.

The method of decomposition mentioned in this chapter is described later in Sec-
tion 3.3, for the climate variables the diurnal variation is not allowed to vary between
the different, previously mentioned, types of days. In general three iterations in the
so-called outer loop are allowed for and in none of the cases it is enough to obtain con-
vergence. However, it corresponds to the number of robustness iterations performed by
default by the function lowess of S-PLUS (Statistical Sciences 1995a), which applies
exactly the same method for assigning weight to the observations. For each iteration
in the outer loop the backfitting iterations are performed until convergence, i.e. until
for both the trend and the seasonal component the largest change from one iteration to
the next is less than 0.1% of the range of the most recent estimate of the component,
cf. (3.18) on page 25. The trend is approximated locally using a window spanning 10
days and a second order polynomial. For the diurnal variation a window spanning 100
days and a first order polynomial is used. In this way relatively fast and irregular vari-
ations can be absorbed by the trend estimate. The estimate of the diurnal variation
at each full hour and the estimate of trend is calculated at 400 equidistant points, i.e.
approximately one point per day, and linear interpolation is used between these points.

2.1 Detection of outliers

2.1.1 Climate

The general approach is to investigate each of the series individually to identify possible
outliers. Hereafter the three series are inspected visually and in parallel for the union
of these time points and based on this it is decided which values to treat as outliers.

The measurements of air temperature is decomposed into a trend and a diurnal varia-
tion which is allowed to change slowly over time. The remainder of this decomposition
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seems to be well described by an AR(2) model. This is confirmed by fitting an AR(2)
model to the series and estimating the autocorrelation function of the residuals of the
fit. However, a time-plot of the residuals shows that the variance is non-constant. To be
able to identify outliers based on these residuals they are standardized using a smooth
estimate of the standard deviation. This is obtained by smoothing the squared residuals
against time using a local quadratic approximation and a nearest neighbour bandwidth
corresponding to 60 days of non-missing observations being within the bandwidth. The
1% of the residuals having largest absolute values receive weight zero in the smoothing.
The residuals are then divided with the so obtained time-varying standard deviation
and finally scaled to have an overall standard deviation of one. For the residuals from
the AR(2) model, standardized in the way described, it is decided to treat time points
for which the absolute value is larger than four as possible outliers. This corresponds
to 40 time points.

The measurements of wind speed are handled as the measurements of air temperature.
However, the variance of the residuals from the AR(2) model seems to be approximately
constant. For this reason the residuals are just scaled to have unit standard deviation.
For 22 time points the absolute value is larger than four and therefore treated as
possible outliers.

Decomposition of the measurements of the global radiation seems to be infeasible due to
the special characteristics of this climate variable. Instead visual inspection is applied.
Disregarding daylight savings, the measurements are plotted against the number of the
day in the year for each hour of the day separately. On these plots 23 possible outliers
are identified. A similar sequence of plots of the increase in global radiation over the
past hour reveals 33 possible outliers. The possible outliers so identified correspond to
50 time points.

Based on the above, 52 separate periods exists for which the neighbour of the series of
climate variables are inspected visually. Measurements of air temperature performed
at VEKS are used as a guidance during the visual inspection. These measurements
are shown in Figure A.3 on page 116. The decisions based on the visual inspection
are summarized in Table 2.1. It is seen that only very few outliers are found. The
remaining measurements of climate are depicted in Figure 2.1.

2.1.2 Heat consumption

A time-series plot of the raw recordings of heat consumption is shown in Figure A.1
on page 114. Some of the outliers are easily identified and therefore a number of steps
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Year Date Time

1995 December 9 13:00 – 20:00 Measurements of wind speed
treated as outliers.

1995 December 11 22:00 Measurement of wind speed
treated as outliers.

1996 March 28 14:00 – 23:00 Measurements of wind speed
treated as outliers.

1996 April 22 02:00 – 03:00 Measurements of air tempera-
ture treated as outliers.

Table 2.1: Outliers in measurements of the climate. Daylight savings are disregarded.

are applied. In each step some outliers are identified and the corresponding values are
treated as missing values in following steps. The steps can be summarized as

1. Extreme values which can be identified either directly or after removing a trend
are regarded as outliers.

2. The log-transformed series is decomposed into trend, seasonal, and remainder
components and extreme values are identified manually based on the remainder
component.

3. Approximate time points of possible outliers are identified by plotting the heat
consumption against the air temperature. Hereafter the actual outliers are iden-
tified by inspecting both series in regions around these time points.

4. Finally, the log-transformed series is decomposed again, but with the outliers
identified above treated as missing values. The remainder component is well
described by an autoregressive model of order 2, but the residual variance seems
to be non-constant. For this reason the residuals are standardized using the
same method as for the air temperature in Section 2.1.1. Hereafter, the heat
consumption data are visually inspected in regions around time points having
standardized residuals with an absolute value above 4.

Here details about which or how many observations are identified in each step will not
be given. The log-transformation used in steps 2 and 4 is applied since it seems to be a
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good way to identify fast peaks, especially occurring during summer. Exactly the same
decomposition method and settings as used for the air temperature in Section 2.1.1 is
applied in steps 2 and 4, with the exception that the seasonal component is allowed to
vary between “working”, “half-holy”, and “holy” days. For the standardization of the
residuals from the AR(2) model the nearest neighbour bandwidth corresponds to 30
days of non-missing observations. This value is smaller than the value used for the air
temperature, but had to be used in order to stabilize the variance of the standardized
residuals.

In total 354 values are identified as outliers and hence treated as missing values. Orig-
inally 56 recordings were missing and hence in total 410 values are missing.

2.2 Replacement of missing values

Figure 2.2 and Table 2.2 summarize the missing values including those arising from
the detection of outliers. Only very few climate data are missing, but for the heat
consumption near 5% of the data are missing. For many of the methods applied in
this report handling of missing values among the climate variables is considerably more
complicated than handling of missing values of the heat consumption. This is because
climate variables typically are low-pass filtered before they are used as explanatory
variables in a model for the heat consumption. Hence, it is crucial to replace the
missing values with appropriate ones for the climate data and since only very few are
missing the actual values are not very crucial.

Actually, it is only when proc arima of SAS/ETS (SAS Institute Inc. 1993) is used in
Chapter 5 and when performing on-line selection of prediction method in Chapter 6,
that missing values of the heat consumption pose a problem. However, missing values
in the heat consumption series is replaced with appropriate ones also, but these are
only used in the situations mentioned above.

Air temperature

There are two periods of missing values of air temperature both in 1996; 01:00 – 18:00
on January 27 and 03:00 – 04:00 on April 22. The missing values are replaced with the
fitted values when regressing the air temperature on the air temperature measured by
VEKS, cf. Figure A.3. For the missing values in January data from the period January
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Figure 2.2: Percent missing values of data on heat consumption by month. Outliers
are treated as missing values. The dotted line indicate the overall fraction of missing
values.

Date Time
09 Dec 1995 13:00 – 20:00
11 Dec 1995 22:00
27 Jan 1996 01:00 – 18:00
28 Mar 1996 14:00 – 23:00
22 Apr 1996 03:00 – 04:00

Table 2.2: Dates and times for which one or more climate variables are missing.
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1 until February 20 is used in the regression since the data are then restricted to a winter
situation and since the VEKS recordings seems to be erroneous just after February 20.
For the missing values in April data from April and May are used since plots of the air
temperature indicate that the spring has started on April 22. For regression the non-
parametric method described by Cleveland (1981) and implemented in the function
lowess in S-PLUS (Statistical Sciences 1995a) is used with three robustness iterations
and a nearest neighbour bandwidth of 2/3.

Wind Speed

There are four periods of missing values of wind speed; two in 1995; 13:00 – 22:00 on
December 9 and 22:00 on December 11, and two in 1996; 01:00 – 18:00 on January
27 and 14:00 – 23:00 on March 28. Since this variable is not clearly related to any of
the other variables the missing values are reconstructed by first decomposing the series
as described in Section 2.1.1, but with only one iteration in the outer loop since the
outliers is treated as missing values. An AR(2) model is then fitted to the remainder
series. We would then prefer to use maximum likelihood estimation and the fixed-point
smoother by Harvey & Pierse (1984) to reconstruct the missing values in the remainder
and then add these to the trend and seasonal components. However, the fixed-point
smoother is not implemented in software available to us and we therefore chose to use
generalized M-estimates for the autoregressive parameters and approximate conditional
mean type robust forward and backward filters as it is implemented in the functions
ar.gm and acm.ave of S-PLUS (Statistical Sciences 1995a) to reconstruct the missing
values in the remainder component. Since the functions can not handle missing values
these are replaced with values equal to the sum of the mean remainder and 1000 times
the range of the remainder. Tukey’s bisquare weights (Statistical Sciences 1995a) are
then used in order to remove the influence of these large values.

Global Radiation

Only for 01:00 – 18:00 on January 27, 1996 the global radiation is missing. Plot of the
air temperature indicates that on January 27, 1996 it was cloudy. This is also true for
January 26, 1996 and therefore the values on January 26 is used to fill the values on
January 27.
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Heat Consumption

Overall, when outliers are treated as missing values, approximately 5% of the data on
heat consumption is missing. In Figure 2.2 the fraction of missing values is shown by
month. Most of the missing values corresponds to periods with only a few hours of
missing values. To replace the missing values the log-transformed series is decomposed
as described in items 2 and 4 on page 6, but since outliers are treated as missing values,
with only one iteration in the outer loop. For the short periods of missing values the
AR(2) auto correlation structure of the remainder is used to reconstruct the missing
values as for the wind speed. There are three periods of length 4 and one period of
each of the lengths 5, 8, 12, 31, 32, 48, and 72. In lag 8 the sample auto correlation
function of the remainder of the decomposition is 0.19 and therefore we use the method
outlined above for periods of length five or lower.

Fortunately, for the remaining periods of missing values, the air temperature is not
missing and therefore the relation between heat consumption and air temperature is
exploited. Specificly, a conditional parametric model with a separate response for each
hour of the day and for working and non-working days is fitted to the data using 2nd
order approximations and a nearest neighbour bandwidth of 70%. The residuals of this
fit contain a slow irregular variation and therefore they are smoothed against time using
a local quadratic regression with a fixed bandwidth of 100 hours (the longest period of
missing values is 72 hours). The residuals of this last fit are then reconstructed as for
periods of length five or lower, after it is verified that an AR(2) model is appropriate.
Hereafter, the missing values for periods of length eight or more are reconstructed by
adding the two series of fitted values to the reconstructed residuals.

2.3 Solar radiation on building walls

The measurement of global radiation is, loosely speaking, the solar radiation on a
horizontal plane. For predicting the heat consumption the solar radiation hitting the
walls of the houses is presumably more adequate. Here a square pillar facing the four
quarters of the globe will be considered. For each of the walls the solar radiation per
square meter is calculated as the sum of the direct, diffuse, and reflected contributions.
The average over the four walls is used as a measure of the contribution of the solar
radiation to the heating of the buildings. The coefficient of reflection is taken to be 0.2
since this is correct for most surfaces (Hansen, Kjerulf-Jensen & Stampe 1987, p. 48).
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The calculations are complicated by the fact that no measurements of both direct and
diffuse radiation are available. Instead the cloud cover is calculated using the measure-
ments of global radiation and an equation (Madsen 1985) describing the dependence
of global radiation on cloud cover. The cloud cover is taken to be the integer value
between zero and eight resulting in the best match. In some sense this solves the
problem of multiple solutions, but it also reveals that the determination of cloud cover
is somewhat uncertain. Hereafter the direct and the diffuse radiation is calculated
using equations by Madsen (1985). Quantities such as the height of the sun and the
angle of incidence is calculated based on the equations in (Øivin Holter, Ingebretsen
& Parr 1979, pp. 45-46). It is noted that the declination is calculated as an approx-
imation. The calculations are performed for the geographical location of Taastrup in
Denmark (latitude: 55.67, longitude: 12.32).



Chapter 3

Statistical Methods

This chapter describes the most of the methods used in the analysis of the corrected
data. The methods used for data correction are mainly referred to in Chapter 2. Para-
metric models, i.e. models in which the properties of the response (heat consumption
in this case) is assumed to be controlled by a finite set of parameters, are described
in Section 3.1. Often it is difficult to specify an appropriate parametric structure. In
this case non- or semi-parametric models can be applied, such models are described
in Section 3.2 and in Section 3.3 a related method for decomposition of time series is
described. In general statistical properties of the estimates such as confidence intervals
or t-tests are not applied in this report. Therefore only estimation in the models are
described, the exception being that a likelihood ratio test is described in the end of
Section 3.1.

For generation of predictions on-line it is desirable to let the estimates adapt to slow
changes in the system. For this purpose the adaptive recursive least squares method
with exponential forgetting is applied. This method is described in Section 3.4. Some
simple summary statistics are listed in Section 3.5. With the purpose of evaluating
different models or selecting a smoothing parameter K-fold cross validation can be
used. This method is described in Section 3.6. Finally, in Section 3.7 it is described
how sample correlation functions and sample cross correlation functions are calculated
in case of missing observations.

13
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3.1 Parametric Models

Below we consider least squares estimation in linear and non-linear regression models
and maximum likelihood estimation in linear regression models where the model error
is an ARMA process. Furthermore, the concept of transfer functions are described
and, finally, a likelihood ratio test is introduced.

Linear regression models

The linear regression model is one of the models used in statistics for which most is
known about the properties of the estimates etc., see e.g. (Myers 1986, Jørgensen 1993).
The term “linear” refers to the fact that, under the model, the expected value of the
response ys, where s denotes the observation number, is a linear combination of some,
possibly transformed, deterministic explanatory variables x

ys = xTs θ + es, (3.1)

where θ is the parameter vector and es is the model error. When the model errors is
independently identical distributed and Gaussian with zero mean, the estimates θ̂ pre-
sented below can be considered maximum likelihood estimates (Jørgensen 1993). If the
assumptions of independent and/or Gaussian observations are dropped the estimates
are termed least squares estimates and the estimates are still unbiased.

Given N observations numbered s = 1, 2, . . . , N , we introduce the design matrix

X =




xT1
xT2
...

xTN




and the vector of responses

y =




y1

y2
...
yN


 .

Assuming that X has full rank the estimates of θ can be written

θ̂ = [XTX]−1Xy. (3.2)
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These estimates minimize the sum of the squared residuals
∑N

s=1(ys−xTs θ)2 and corre-
spondingly they are denoted least squares estimates. Note that for the actual numerical
calculations (3.2) should not be applied directly. One solution is to use methods such
as those presented by Miller (1992). However, most software packages for statistics use
appropriate numerical methods.

As noted above the linear regression model does not imply that the response on the
explanatory variables is linear. A simple example of this is the following model where
the response y is measured with noise and evolves over time t as a first order harmonic
with known period length, set to 2π for simplicity

ys = a0 + a1 cos(ts) + a2 sin(ts) + es.

This is a linear regression model and, based on observations, the parameters a0, a1, and
a3 can be estimated as described above with x = [1 cos(ts) sin(ts)]

T and θ = [a0 a1 a3]T .
Simple as it is, this example points towards much richer ways of generating the design
matrix X. If the data is generated by the system

ys = f(us) + es

the function f(·) can be estimated under the assumption that it has continuous deriva-
tives up to order two by approximating it with a piecewise cubic polynomial with
continuous derivatives up to order two. This can be accomplished by using (3.2) with

xs =




1
us
u2
s

u3
s

(us − u(1))
3
+

(us − u(2))
3
+

...
(us − u(K))

3
+




,

where the subscript “+” denotes truncation of negative values and u(j); j = 1, 2, . . . , K
is the points at which the third order derivative is allowed to change. These points
are called the knots and the basis defined by xs is called a cubic spline. Quadratic
splines are defined similarly, except that the discontinuity occurs in the second order
derivatives. A B-spline basis will provide the same estimate of f(·) and numerically it
is more stable (de Boor 1978). Also, using a B-spline basis, it is possible to estimate
the function f(·) under the additional assumption that it is periodic with a specified
period length (de Boor 1978).
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It is noted that by use of spline bases one or more of the elements in θ in (3.1) may be
replaced by functions which can be estimated together with the remaining parameters
by use of the methods outlined above.

Non-linear regression models

Opposed to linear regression models, in non-linear regression models the parameters
enter the model in a non-linear way so that the expected value of the response y can not
be written as a linear combination of some, possibly transformed, explanatory variables
x. Instead, the expected value of the response is a function of the explanatory variables.
Except for the value of the parameters θ the function is known. This may be expressed
as

ys = f(xs, θ) + es. (3.3)

Often es is assumed to be independently identical distributed with zero mean. Below
estimation in (3.3) is outlined, for further reading see e.g. (Gallant 1987).

Given N observations numbered s = 1, 2, . . . , N , the parameters θ are estimated by
least squares, if the estimates θ̂ are chosen to minimize

V (θ̂) =
N∑

s=1

(ys − f(xs, θ̂))2, (3.4)

i.e. in principle the same criterion as is used for the linear regression model. However,
in this case a closed-form solution does not exist. Therefore starting values of the
estimates must be supplied, where after a general optimization routine is applied with
the purpose of finding the values θ̂ which minimize the criteria above. However, in
general, only a local minima can be guaranteed. In this report the function nlminb in
S-PLUS 3.4 is applied (Statistical Sciences 1995a). This function applies the algorithm
described by Gay (1983).

ML Estimation in Regression Models with correlated errors

If model (3.1) are used when the observations s are obtained sequentially in time
t the noise will often be auto-correlated. In this case the least squares estimates are
unbiased but have increased variance. Furthermore, the least squares estimates provide
no estimates corresponding to the correlation structure of the noise. One solution is
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to use maximum likelihood (ML) estimation under an assumption of a particular noise
model. In this report models of the following type is used:

yt = xTt θ + zt, (3.5)

where observations are indexed by t to indicate that they are obtained sequentially in
time. {zt} is a zero mean, stationary, and invertible ARMA(p, q) process, i.e.

A(q−1)zt = C(q−1)et, (3.6)

in which A(q−1) and C(q−1) are polynomials of order p and q, respectively, in the
backward shift operator q−1. Both polynomials may be replaced by products of poly-
nomials and some of the parameters in the polynomials may be fixed at zero. The
process {et} is assumed to be zero mean Gaussian white noise. The (complex) solu-
tions to A(q−1) = 0 and C(q−1) = 0 should all have modulus less than one in order to
ensure stationarity and invertibility (Brockwell & Davis 1986).

In this report the ML estimates under the model are calculated using the S-PLUS
function arima.mle (Statistical Sciences 1995a, Section 17.3). For the data considered
in this report yt is missing for some t and therefore a state space formulation is used
together with the Kalman filter in order to evaluate the likelihood function (Kohn
& Ansley 1986, Madsen 1995). Since, for the data considered, there is no missing
observations in the beginning of the series the Kalman filter recursions are conditioned
on the first p observations. Furthermore, the regression parameters are concentrated
out of the likelihood (Kohn & Ansley 1985) and the estimates of the parameters in the
polynomials are transformed to ensure stationarity and invertibility (Jones 1980).

Transfer functions

Transfer functions are related to the mathematical description of a dynamical system
and essentially describe how the input process {xt} is filtered to produce some output
{yt}. One example of a transfer function is the dependence of indoor air temperature
on the outdoor temperature. This dependence is dynamic in that, during the heating
season, only slow variations in the outdoor temperature are reflected in the indoor
temperature or in the heat needed to maintain a particular indoor temperature. In the
following rational transfer functions for discrete time models are described.

A rational transfer function can be written

H(q) = q−d
B(q−1)

A(q−1)
(3.7)
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where q−dxt = xt−d, and d is an integer denoting a delay. A(q−1) and B(q−1) are
polynomials in the backward shift operator q−1, i.e.

A(q−1) = 1 + a1q
−1 + . . .+ anaq

−na

B(q−1) = b0 + b1q
−1 + . . .+ bnbq

−nb

Thus the notation
yt = H(q)xt

refers to the recursions

yt = −a1yt−1 − . . .− anayt−na
+b0xt−d + b1xt−d−1 + . . .+ bnaxt−d−nb .

The transfer function is stable, in the sense that a limited input results in a limited
output, if the solutions to

zna + a1z
na−1 + . . .+ ana = 0

lies strictly within the unit circle in the complex plane, i.e. if the solutions all fulfill
|z| < 1. The stationary gain, also called the DC-gain, of the transfer function is

H(1) =

∑nb
i=0 bi

1 +
∑na

i=1 ai
.

See (Ljung 1987) or (Madsen 1995) for a more thorough description of the subject.
Transfer functions can be used in connection with linear regression models or models
as defined by (3.5) and (3.6), whereby the parameters of the transfer functions can be
estimated from data, see e.g. (Abraham & Ledolter 1983, Ljung 1987, Madsen 1995).

Testing hypothesis

When applying statistical tests the support in the data for different hypotheses are
investigated. This is done by formulating a null hypothesis H0 and an alternative
hypothesis H1 about the data. Normally, H0 should be a statement about parameters
in H1. For instance, two “treatments” A and B may be assigned randomly to a
number of experimental units, where after some response is measured on each unit.
Hereafter it is desirable to investigate if a difference in the effects of “treatments” on
the expected responses µA and µB of an experimental unit can be detected. This can
be formulated as a null hypothesis in which µA = µB and an alternative hypothesis in
which µA 6= µB. The hypothesis testing then proceeds by calculating a quantity called
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the test statistic, which, assuming H0 to be correct, follows a particular distribution.
Then, loosely speaking, if the test statistic is unlikely to have originated from the
particular distribution H0 is rejected and the expected values are said to be significantly
different. Strictly, if H0 is not rejected it can not be inferred that µA = µB since the
procedure outlined above does not control the error rate of accepting H0 when H1 is
true. In this case it is recommended to calculate a confidence interval for the difference
in means µA − µB. For further reading see e.g. (Moses 1986, Chapters 5 and 6).

In this report likelihood ratio tests (Jørgensen 1993, p. 32) are used to test hypotheses
about θ in the model (3.5) and (3.6). Let H1 be the hypothesis corresponding to the
full model and let H0 be the hypothesis corresponding to a subset of the full model.
Furthermore, let L1 and L0 be the corresponding likelihoods as calculated by arima.mle

(Statistical Sciences 1995a) and let n1 and n0 be the number of parameters in the two
models. The likelihood ratio statistic is then defined as

G = 2 log(L1/L0), (3.8)

where, under H0, the asymptotic distribution of the statistic is a χ2 distribution with
n1 − n0 degrees of freedom. Thus, if G > χ2

1−α(n1 − n0), where α is the level of
significance and χ2

1−α(n1 − n0) is the 1 − α quantile in the χ2 distribution, then H0

is rejected. Before the test is applied the fulfillment of the assumptions for maximum
likelihood estimation in the model corresponding to H1 should be investigated.

3.2 Non- and Semi-parametric models

In pure non-parametric regression the observations ys are assumed to be generated by
a system having the following mean structure:

E[ys] = f(xs), (3.9)

where xs is a vector containing the explanatory variables corresponding to observation
s. Several methods are available for estimation in (3.9), see e.g. (Hastie & Tibshirani
1990). For the application considered in this report the number of explanatory variables
is high, making estimation in (3.9) difficult, see e.g. (Hastie & Tibshirani 1990, pp. 83-
84). For this reason and since we have some approximate knowledge of the structure
of the appropriate models, cf. Chapter 4, the models described below are applied.

Conditional parametric models are linear regression models in which the parameters
are replaced by functions of one or more explanatory variables. This kind of models are
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also called varying-coefficient models, but here we prefer to reserve this term to models
in which the coefficient-functions do not share the same argument(s) as in (Hastie &
Tibshirani 1993). Estimation in conditional parametric models may be accomplished
by use of a method similar to local regression (Cleveland & Devlin 1988). The method
is described below.

If some of the coefficient-functions in a conditional parametric model are required
to be constant across all values of the argument(s) the resulting model is called a
semi-parametric model as by Hastie & Tibshirani (1990, p. 118). Estimation in semi-
parametric models are also described in this section. Note that other authors term
other types of models as “semi-parametric” also, but here the terminology of (Hastie
& Tibshirani 1990) will be followed.

Conditional parametric models

Below estimation in conditional parametric models is described. The model is of the
form

ys = xTs θ(us) + es; s = 1, . . . , N, (3.10)

where the response ys is a stochastic variable, us and xs are explanatory variables,
es is i.i.d. N(0, σ2), θ(·) is a vector of unknown but smooth functions with values in
Rp, and s = 1, . . . , N are the observation numbers. When us is constant across the
observations the model reduces to an ordinary parametric linear model.

Estimation in (3.10) aims at estimating the functions θ(·) within the space spanned
by the observations of us; s = 1, . . . , N . The functions are only estimated for distinct
values of the argument u. Below u denotes one of these fitting points and θ̂(u) denotes
the estimates of the coefficient-functions, when the functions are evaluated at u.

One solution to the estimation problem is to replace θ(us) in (3.10) with a constant
vector θu and fit the resulting model locally to u, using weighted least squares. Below
two similar methods of allocating weights to the observations are described, for both
methods the weight function W : R0 → R0 is a nowhere increasing function, R0 denotes
the non-negative real numbers. In this report the tricube weight function

W (u) =

{
(1− u3)3, u ∈ [0; 1)
0, u ∈ [1;∞)

is used. Hence, W : R0 → [0, 1].
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In the case of a so-called spherical kernel the weight on observation s is determined by
the Euclidean distance ||us − u|| between us and u, i.e.

wu(us) = W

( ||us − u||
}(u)

)
.

A so-called product kernel is characterized by distances being calculated for one di-
mension at a time, i.e.

wu(us) =
∏

j

W

( |uj,s − uj|
}(u)

)
,

where the multiplication is over the dimension of u. The scalar }(u) > 0 is called the
bandwidth. If }(u) is constant for all values of u it is denoted a fixed bandwidth. If }(u)
is chosen such that a certain fraction (α) of the observations fulfill ||us−u|| ≤ }(u) then
α is denoted a nearest neighbour bandwidth. If u has dimension of two or larger, scaling
of the individual elements of us before applying the method should be considered, see
e.g. (Cleveland & Devlin 1988). Rotating the coordinate system in which us is measured
may also be relevant.

If the bandwidth }(u) is sufficiently small the approximation of θ(·) as a constant vector
near u is good. However, this implies that a relatively low number of observations is
used to estimate θ(u), resulting in a noisy estimate or large bias if the bandwidth is
increased. See also the comments on kernel estimates in (Anderson, Fang & Olkin
1994).

It is, however, well known that locally to u the elements of θ(·) may be approximated
by polynomials, and in many cases these will be good approximations for larger band-
widths than those corresponding to local constants. Local polynomial approximations
are easily included in the method described. Let θj(·) be the j’th element of θ(·) and let
pd(j)(u) be a column vector of terms in the corresponding d-order polynomial evaluated
at u, if for instance u = [u1 u2]T then p2(u) = [1 u1 u2 u

2
1 u1u2 u

2
2]T . Furthermore, let

xs = [x1s . . . xps]
T . With

zTs =
[
x1sp

T
d(1)(us) . . . xjsp

T
d(j)(us) . . . xpsp

T
d(p)(us)

]
(3.11)

and

φ̂
T

(u) = [φ̂
T

1 (u) . . . φ̂
T

j (u) . . . φ̂
T

p (u)],

where φ̂j(u) is a column vector of local constant estimates at u corresponding to
xjspd(j)(us), estimation is handled as described above, but fitting the linear model

ys = zTsφu + es; i = 1, . . . , N, (3.12)
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locally to u, indicated by the subscript on the parameter-vector. Hereafter the elements
of θ(u) are estimated by

θ̂j(u) = pTd(j)(u) φ̂j(u); j = 1, . . . , p. (3.13)

When xs = 1 for all s, i.e. p = 1, this method is identical to the method by Cleveland &
Devlin (1988), with the exception that they center the elements of us used in pd(j)(us)
around u and hence pd(j)(us) must be recalculated for each value of u considered.

The local constant (intermediate) estimates for arguments us; s = 1, 2, . . . , N can be
expressed as

φ̂(us) = [ZTWsZ]−1ZTWsy, (3.14)

where Z is the design matrix corresponding to the local constant estimates, i.e. the
rows of Z consists of (3.11). Ws is a diagonal weight matrix corresponding to the
fitting point us

Ws = diag{wus(u1), wus(u2), . . . , wus(uN )}
and y is a vector containing the observations of the response. From (3.14) and (3.12)
it is clear that the fitted values can be expressed as

ŷs = zTs φ̂(us) = zTs [ZTWsZ]−1ZTWsy. (3.15)

Consequently the fitted values are linear combinations of the observations y, unless y
is used to select the weights in Ws. The fitted (smoothed) values ŷ can be written

ŷ = Sy, (3.16)

where S is called the smoother matrix and when S does not depend on y the smoother
is called a linear smoother (Hastie & Tibshirani 1990). When nearest neighbour or
fixed bandwidths are used for estimation in conditional parametric models as described
above the resulting smoother is linear. Note that S is equivalent to the hat-matrix in
linear regression (Jørgensen 1993).

Semi-parametric models

A semi-parametric model in the sense used in this report is a mix between a linear
regression model and a conditional parametric model, i.e.

ys = zTsφ + xTs θ(us) + es; s = 1, . . . , N, (3.17)
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where z is a vector of explanatory variables for which the corresponding coefficients
are global constants and where x is a vector of explanatory variables for which the
corresponding coefficients depend on one or more explanatory variables u.

As shown above, if estimation in a conditional parametric model is performed as de-
scribed above, the resulting smoother is linear, in the sense that the fitted values are
linear combinations of the observations of the response. For this reason the results de-
scribed by Hastie & Tibshirani (1990, p. 118) apply to estimation in (3.17), when the
method described in the previous subsection is used for estimation of the conditional
parametric part of the model.

Let

y =




y1

y2
...
yN




and

Z =




zT1
zT2
...

zTN




and let S denote the smoother matrix corresponding to the conditional parametric
model and the estimation method used. An estimate of the global parameters φ is
then

φ̂ = [ZT (I− S)Z]−1ZT (I− S)y.

Note that (I−S)Z can be obtained as the residuals after smoothing each column of Z.
Hereafter, estimates of the coefficient-functions can be obtained applying the smoother
to y − Zφ̂.

Note also that if both z and x has one element which is constant across the observations
the estimates are not uniquely defined. In this case we will require that xTs θ̂(us) sums
to zero over the observations. This can be accomplished by applying the conditional
parametric model in the usual way, where after the average of the fitted values are
subtracted from the fitted values. It is noted that the average of the fitted values
is, like the fitted values them self, a linear combination of the response to which the
conditional parametric model is applied. For this reason the properties of the smoother
is preserved.
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3.3 Decomposing Time Series

This section describes a method for decomposition of time series in a trend, seasonal,
and remainder components. A method was chosen that results in smooth estimates of
the trend component and allows for non-stationary, but smooth, changes in the seasonal
component. Furthermore, the method allows for different seasonal components for
different types of days.

The method is very similar to the STL procedure (Seasonal-Trend decomposition proce-
dure based on Loess) described in (Cleveland, Cleveland, McRae & Terpenning 1990).
The STL procedure uses locally weighted polynomial regression smoothers iteratively
to decompose a time series. For readers familiar with the STL procedure we men-
tion that the difference is that we apply a convergence criterion in both the inner and
outer loop. Furthermore, we do not perform the low-pass filtering of the smoothed
cycle-subseries and the post smoothing of the seasonal component. Finally, due to the
type of data, we must allow for different seasonal components for different type of days
(weekends, working days).

The algorithm consists of an outer and an inner loop. At startup an estimate of the
trend component is calculated by smoothing the time series plot of the data, using a
bandwidth well above the period length of the seasonal component and ignoring this
component. The outer loop down weights observations with large residuals, exactly as
described in Section 2.4 of (Cleveland et al. 1990). The inner loop is essentially the
back-fitting algorithm (Hastie & Tibshirani 1990). It is implemented as follows

Step 1 Subtract the trend component and do seasonal smoothing (see below) on
the result.

Step 2 Detrend the seasonal component by smoothing the time series plot of the
seasonal with the same smoother as used to estimate the trend component and
subtracting the smooth from the seasonal obtained in step 1.

Step 3 Subtract the seasonal component obtained in step 2 from the data and
smooth the resulting time series as for the initial estimate of the trend component.

Step 4 Check for convergence and go to step 1 if convergence has not been
obtained.

Let xt denote the original time series with an estimate of the trend component sub-
tracted. Let h(t) denote the time of day at the running time t, and let d(t) denote the



3.4. ADAPTIVE ESTIMATION 25

type of day corresponding to t. The seasonal smoothing is accomplished by smoothing
(t, xt) for each individual element of the pair (h(t), d(t)), i.e. no smoothing is performed
over neighbouring values of h(t). Consequently, the seasonal component is allowed to
change slowly.

For smoothing locally weighted polynomial regression (Cleveland & Devlin 1988) (with
fixed bandwidth, tricube window, and linear interpolation between equally spaced
points) is used. Thus, the estimates are mainly determined by (i) the span in days
of the windows used for the trend and the seasonal smoother, (ii) degrees of the poly-
nomials fitted locally, and (iii) a user defined grouping of days. Furthermore, the user
might decide not to distinguish between days for some of the 24 hours of the diurnal
cycle. As long as the number of equally spaced points in which to calculate the smooth
is not too low it is of minor importance. We have found that 50 are appropriate in
most situations. However, small window spans require more points.

Let Ĉnew(tj) be the most resent estimate of the component (seasonal or trend) evalu-

ated in the fitting point tj and let Ĉold(tj) be the corresponding value at the second
most resent iteration. For both seasonal and trend components the following value is
calculated

max
j
{|Ĉnew(tj)− Ĉold(tj)|}

max
j
{Ĉnew(tj)} −min

j
{Ĉnew(tj)}

(3.18)

and when both of these are below a certain value the iterations in the inner loop are
stopped. Unless otherwise stated a value of 0.001, corresponding to a maximum change
of 0.1%, is used. For the outer loop max in the numerator of (3.18) is replaced by a
quantile calculation, where by default the 99% quantile is used.

3.4 Adaptive Estimation

Normally, when estimating the parameters of a model based on a set of observations
one set of estimates are obtained. However, in on-line situations new observations
arrive at (approximately) known time points and it is thus desirable to update the
estimates using this new data. Also, it may be desirable to down weight, and eventually
exclude, old data. Reasons for this includes (i) the basic system changes slowly over
time, e.g. due to more houses being connected to the district heating network and
(ii) some parts of the system which are not modelled induces slow changes in the
estimates corresponding to the best approximation. An example of (ii) is the transition
from the summer- to the winter-situation. During the summer period people turn
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off their heating equipment and during the early autumn people gradually start to
turn the equipment on again. Due to different “thresholds” the transition for a large
group of houses is smooth. Results presented in this report show that the transition
occurs in a way that, for overlapping temperature intervals, the slope on plots of heat
consumption versus temperature is markedly different for August and September in
1995, cf. Figure 5.2 on page 45.

In this report adaptive recursive estimation, with exponential forgetting, in linear re-
gression models and autoregressive models is used. The method is described by Ljung
& Söderström (1983). Using the method the estimates at time t for model (3.1) is
obtained as

θ̂t = argmin
�

t∑

s=1

λt−s(ys − xTs θ)2, (3.19)

where 0 < λ < 1 is called the forgetting factor. Thus, the method is a special case
of weighted linear regression. Auto regressive models can also be handled using this
concept. For instance the parameters µ and φ24 in the model yt = µ + φ24yt−24 + et,
where et is independently identical distributed random variables with zero mean, can
be estimated adaptively using xs = [1 yt−24]T and θ = [µ φ24]T .

The estimates (3.19) can be calculated using the updating formulas

Rt = λRt−1 + xtx
T
t (3.20)

and

θ̂t = θ̂t−1 + R−1
u,txt

[
yt − xTt θ̂t−1

]
. (3.21)

Initial estimates must be supplied. In the work described in this report a vector of
zeros is used, although in on-line situations a qualified guess should be applied to
avoid large prediction errors at startup. Similarly, the estimates can not be updated
until the matrix Rt is non-singular. Here we do not try to invert Rt until information
corresponding to 14 days of hourly observations is included in the matrix.

In general, after the initial period, it can not be guaranteed that Rt will stay non-
singular at every point in time. However, in the work described here no such problems
are encountered, but in on-line situations methods to deal with the problem should be
implemented. Solutions to the problem include (i) not to update the estimates if Rt

is close to being singular and (ii) use a formulation of (3.20) and (3.21) in which no
matrix inversion is required (Ljung 1987). However, using method (ii) may produce
highly inadequate estimates in situations corresponding to Rt being singular. A general
solution to the problem is to use a method called selective forgetting (Parkum 1992) in
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which, loosely speaking, only the parts of Rt in which new information becomes avail-
able is updated with new information and correspondingly old information forgotten.
However, in many situations the simple solution (i) may be sufficient.

3.5 Summary Statistics

In this section the summary statistics used to evaluate the model errors are presented.
The squared degree of determination or coefficient of determination R2, in linear regres-
sion also called the squared multiple correlation coefficient, is a single number which
describes the model error. The value express how large a part of the variation in the
dependent variable is explained by the model. For a particular model R2 is defined as

R2 = 1−
∑N

s=1 ê
2
s∑N

i=1(ys − ȳ)2
, (3.22)

where ys is the observation of the dependent variable, ȳ is the average of ys, s =
1, . . . , N , and ês, s = 1, . . . , N is the residuals or model errors.

Note that R2 is calculated based on the residuals from the data set for which the
parameters of the model are estimated. Hence, a model for which a large R2 is obtained
is not necessarily desirable, since it might be due to an over fitting of the data.

The root mean square error RMS is defined as

RMS =

√√√√ 1

N

N∑

s=1

ê2
s (3.23)

and the mean absolute error is defined as

MAE =
1

N

N∑

s=1

|ês|. (3.24)

For a linear regression model with zero mean Gaussian independent identical dis-
tributed model errors RMS is the maximum likelihood estimate of the standard devi-
ation of the model error es. Compared to the MAE the RMS assigns more weight to
large model errors.

For both RMS and MAE a small value is desirable but as for R2 close to one this
may be achieved at the cost of over fitting when the residuals are calculated based on
the same data set as used for estimation. Over fitting can be corrected for by use of
cross-validation, cf. Section 3.6.
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3.6 Cross Validation

Cross validation aims at giving an unbiased estimate of the predictive ability of a
model. This is archived by excluding some observations from estimation and using
the obtained estimates to predict the observations excluded. Often the term cross
validation is used in the sense of leaving one observation out at a time. Here we will
use the term leave-one-out cross validation to distinguish it from the more general
K-fold cross validation. Assuming the observations are numbered 1, 2, . . . , N , using
leave-one-out cross validation the cross validated sums of squares CVN is defined by

CVN =
1

N

N∑

s=1

(
ys − ŷ(−s)

s

)2
, (3.25)

where ŷ
(−s)
s is the prediction of ys calculated without the observation s.

In K-fold cross validation the data are split in K parts which are excluded one at a
time. The K-fold cross validated sums of squares CVK is defined by

CVK =
1

K

K∑

j=1

1

Nj

∑

s∈Ij

(
ys − ŷ(−j)

s

)2
, (3.26)

where Ij is the set of observation indexes corresponding to the j’th part of the data, Nj

is the number of observations in the j’th part of the data, and ŷ
(−j)
s is the prediction

of ys calculated without the j’th part of the data. For K = N (3.26) reduces to (3.25).

If more than one observation is left out at a time there is numerous ways to split the
data set. In the work presented in this report all data are related to a particular date
and time. Furthermore, the main problem seems to be that the underlying model
changes over time. Therefore, we shall split the data along the time-axis, making the
K-fold cross validation considerably more simple to perform than leave-one-out cross
validation.

As noted by Breiman & Spector (1992) and by Shao (1993) leave-one-out cross vali-
dation will not lead to the selection of the model with the best predictive ability in
that it tends to select an unnecessarily large model. Also, since we expect correlation
of model errors close in time leave-one-out cross validation can lead to even more over
fitting in this case. Breiman & Spector (1992) showed that in a pure regression setting
5-fold cross validation is superior to leave-one-out cross validation.

If K is small it can be informative to consider each 1/Nj

∑
s∈Ij(ys − ŷ

(−j)
s )2 in (3.26)

separately, or more generally the RMS or MAE of the validated errors for each part
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j of the data. In this way heterogeneity among the different parts of the data can be
highlighted, cf. Figure 5.5 on page 49.

3.7 Sample Correlation Functions

This section describes how missing observations are treated when estimating the au-
tocovariance/correlation function (ACF), the partial autocorrelation function, and the
inverse autocorrelation function. Furthermore, it is described how the sample cross
correlation function (SCCF) between two time series are calculated in case of some
observations being missing. For the sample autocorrelation function (SACF) the ap-
proach described in (Dunsmuir & Robinson 1981) is used, but the actual formulas are
changed slightly to make the estimators produce the usual estimates in the case of no
missing observations. The sample inverse and partial autocorrelation functions (SIACF
and SPACF) are based on the values of SACF. The sample cross correlation function
(SCCF) between two time series are calculated using methods similar to the methods
used for SACF.

The autocorrelation function

Let x1, x2, . . . , xN be the observations from the process {xt}, where some observations
may be missing. Define

at =

{
0, if xt is missing
1, otherwise

. (3.27)

Using the temporary quantities

Ca(k) =
1

N − |k|

N−|k|∑

t=1

atat+|k|,

and

C2(k) =
1

N

N−|k|∑

t=1

atat+|k|(xt − x̄)(xt+|k| − x̄),

where

x̄ =

N∑

t=1

atxt/

N∑

t=1

at.



30 CHAPTER 3. STATISTICAL METHODS

The estimate of the autocovariance in lag k is

C(k) =
C2(k)

Ca(k)
. (3.28)

It is seen that the method just skips the summands which cannot be calculated due to
missing observations, and adjusts the number of observations accordingly. When no
observations are missing Ca(k) = 1 and

C(k) =
1

N

N−|k|∑

t=1

(xt − x̄)(xt+|k| − x̄),

which is the usual estimator, cf. (Chatfield 1984, p. 60) or (Madsen 1995, p. 147). If
the definition of Ca(k) in (Dunsmuir & Robinson 1981) is used, then Ca(k) = (N −
|k|)/N when no observations are missing. Consequently, 1/N in the usual estimator of
autocovariance is replaced by 1/(N−|k|), and the estimator leads no longer to a positive
semi-definite autocovariance function, cf. (Priestley 1981, p. 323) or (Madsen 1995,
p. 131).

Based on the estimates of autocovariance (3.28) the sample autocorrelation function is
calculated as

ρ̂(k) =
C(k)

C(0)
. (3.29)

The inverse autocorrelation function

The inverse autocorrelation function is calculated as in proc arima of SAS/ETS (SAS In-
stitute Inc. 1993), except that missing values are allowed. A high order autoregressive
process is fitted to the series using the Yule-Walker equations and the estimates of the
autocorrelation function (3.29). Hereafter the autocorrelation function is calculated for
the dual process, i.e. a moving average process of the same order as the autoregressive
process.

Let kmax be the maximum lag for which the sample inverse autocorrelation function is
to be calculated. The order of the process is then

p = min

([
N

2

]
, kmax

)
,

where [·] denotes the integer value. If kmax > N/2, the estimates for the lags after N/2
is zero.
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The partial autocorrelation function

The partial autocorrelation function is estimated based on (3.29) and calculated as
described in (Abraham & Ledolter 1983, p. 212).

The cross correlation function

Let x1, x2, . . . , xN and y1, y2, . . . , yN be observations from the processes {Xt} and {Yt},
respectively. Some of the observations may be missing. Along with (3.27) for xt we
define

bt =

{
0, if yt is missing
1, otherwise

. (3.30)

For k ≥ 0 the temporary quantities

Cab(k) =
1

N − k
N−k∑

t=1

atbt+k

Cab(−k) =
1

N − k
N−k∑

t=1

at+kbt

and

C2
xy(k) =

1

N

N−k∑

t=1

atbt+k(xt − x̄)(yt+k − ȳ)

C2
xy(−k) =

1

N

N−k∑

t=1

at+kbt(xt+k − x̄)(yt − ȳ),

where ȳ is defined similarly to x̄ above, are defined. For both negative and positive k

Cxy(k) =
C2
xy(k)

Cab(k)
(3.31)

is used as an estimate of the cross covariance function at lag k and the sample cross
correlation function at lag k is calculated as

ρ̂xy(k) =
Cxy(k)√

Cxx(0)Cyy(0)
, (3.32)

where Cxx(0) and Cyy(0) are the estimates of the variances as in (3.28). When no
observations are missing the formulae reduce to the well known ones (Chatfield 1984).
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Variance of estimates

It is well known (Chatfield 1984, Madsen 1995) that if the observations originates from
a white noise process the variance of SACF and SPACF are both approximately
1/N . This is also true for SIACF although it is usually not mentioned in textbooks
(one exception being (Madsen 1995)). If the distribution of the white noise has finite
moments the fact can be derived from Theorem 3.6 in (Bhansali 1980), which is valid
for the method of estimation mentioned above. It is thus natural to adjust N to account
for the number of observations which cannot be used due to missing values, i.e.

V [ρ̂(k)] ≈ [NCa(k)]−1 , (3.33)

which equals 1/N if no observations are missing.

For the SIACF and SPACF this approach is not directly applicable since it is not
possible directly to relate the estimates to a specific lag. The maximum or minimum
of Ca(k) over the lags for which the estimates are calculated could be used, depending
on the particular application. However, in this report the usual 1/N is used, since
the method will newer be used anyway if a substantial fraction of the observations is
missing.

For the cross correlation function it is well known (Chatfield 1984) that the estimates
have variance 1/N if the series are uncorrelated. We therefore proceed as for the auto
correlation function and use

V [ρ̂xy(k)] ≈ [NCab(k)]−1 , (3.34)

which also equals 1/N if no observations are missing.



Chapter 4

Considerations on model structure

In this chapter some physical characteristics of the system are used select an appropriate
structure for the statistical model. First the stationary heat transfer trough a wall, the
stationary heat and radiation transfer trough a window, and heat loss due to ventilation
are described. A simple model for the dynamic response on climate is postulated and
special considerations related to the heat consumption of a larger group of buildings are
described. In all of the above aspects actual values of physical constants, e.g. thermal
conductivity, are not used. Instead the structure of the model obtained is used to obtain
a structure of an appropriate statistical model. It turns out that for a winter situation
and given a particular value of the wind speed a linear regression model with dynamic
response on the ambient air temperature and the solar radiation is appropriate. This
kind of model is called a transfer function model in the statistical literature (Box &
Jenkins 1976), but in this case strong relations among the parameters exist. However,
since the wind speed is assumed to affect the convection heat coefficient on the outside
of the buildings, most of the parameters of the model must be replaced by functions of
either the wind speed or a low-pass filtered wind speed. Furthermore, in the autumn
and spring there will be a period of time in which the consumers start/stop reacting
on climate changes. For these reasons the appropriate statistical model turns out to
be a varying-coefficient model (Hastie & Tibshirani 1993) with a dynamic response on
the climate.

33
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4.1 Stationary relations

In this section the stationary heat transfer trough a wall and a window are described.
For further reading see e.g. (Incropera & DeWitt 1985, Hansen et al. 1987).

4.1.1 Heat transfer trough a wall

Figure 4.1 shows a sketch of a wall with indoor air temperature Ti, ambient air tem-
perature Ta, indoor surface temperature Ts,i, outdoor surface temperature Ts,o, solar
radiation orthogonal to the wall R0, and the direction of a positive heat flux Q̇.
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Figure 4.1: Heat transfer trough an outer wall with notation indicated.

For the convection and solar heating on the outside of the wall the stationary relation
yields

Q̇ = ho(Ts,o − Ta)− εR0, (4.1)

where ho is the convection heat coefficient on the outside of the wall and ε is the fraction
of solar radiation not reflected. The convection coefficient will be influenced by the
wind speed and direction. For the inside of the wall only convection is considered, and
the stationary relation thus becomes

Q̇ = hi(Ti − Ts,i), (4.2)

where the convection heat coefficient on the inside of the wall hi will be nearly constant
due to the to the fairly constant indoor environment. Furthermore, the stationary heat
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conduction trough the wall is described by

Q̇ = Uw(Ts,i − Ts,o), (4.3)

where Uw is the thermal conductivity divided by the wall thickness. Note that (4.3)
is also valid when the wall consists of layers of different materials. In this case Uw
can be found using the thermal conductivity and thickness of each layer (Incropera &
DeWitt 1985).

Simple arithmetics lead to the following stationary relation between the ambient air
temperature, the indoor air temperature, the solar radiation orthogonal to the wall,
and the stationary heat flux trough the wall.

Q̇ = U(Ti − Ta)− U
ε

ho
R0, (4.4)

where U = (1/Uw + 1/hi + 1/ho)
−1.

4.1.2 Energy transfer trough a window

The energy transfer trough a window consists of conduction/convection as described
above and solar radiation directly transmitted trough the window. Figure 4.2 shows
a window with indoor air temperature Ti, ambient air temperature Ta, solar radiation
orthogonal to the window R0, and the direction of a positive energy flux Q̇. Energy is
also transfered trough the window by conduction/convection as described in the previ-
ous section. However, it is assumed that all solar radiation not reflected is transfered
trough the window as radiation, i.e. for application in this context (4.1) and (4.4) must
be modified by omitting terms containing ε. This is because these terms would relate
to solar radiation heating the window itself. Consequently, the following equation is
obtained for the energy flux trough the window

Q̇ = −εR0 + U(Ti − Ta), (4.5)

where the ε is the fraction of solar radiation not reflected and U = (1/Uwin + 1/hi +
1/ho)

−1, here Uwin is the thermal conductivity divided by the window thickness. The
equation is valid also when the window consists of multiple layers of glass separated
by a gas or atmospheric air.
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Figure 4.2: Solar radiation trough a window.

4.1.3 Ventilation

The warm air from the buildings is gradually replaced by cold air from the surround-
ings. Here we call this process ventilation, although it is often called infiltration in
the technical literature. The heat flux needed to heat the air from the ambient air
temperature Ta to the indoor temperature Ti can be expressed as

Q̇ = CV̇ (Ti − Ta), (4.6)

where V̇ is the flow of air trough the building and C is the product of the specific heat
capacity of the air and the mass density of the air. It is evident that for some buildings
V̇ depends on the wind speed. Also, the humidity of the air might influence C. Since
the amount of water vapour corresponding to a specific relative humidity is strongly
dependent on the temperature it is plausible that the variation in C to some extend
can be explained by the ambient air temperature.

4.2 Approximate dynamics

In this section the stationary relations described in Section 4.1 will be modified to
take into account the dynamic response on changing climate conditions. However, the
actual building dynamics will not be entirely modelled. This seems reasonable since
for instance a constant indoor temperature will effectually eliminate the heat storage
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capacity of the floor and internal walls. Filtering of climate variables are considered
in this section. As described in e.g. (Åström 1970), when a linear dynamic system
is sampled and if the input can be considered constant within the sampling interval
the input-output relation of the discrete system can be described by rational transfer
functions H(q) = B(q−1)/A(q−1), where A and B are polynomials and q−1 is the
backward shift operator (q−1xt = xt−1). For this reason it seems reasonable to use
rational transfer functions when filtering the climate variables. Furthermore, it will be
required that the stationary gain of the filters H(1) is one. Finally, the dot above Q
will be dropped since it is only a matter of a constant if we consider the average heat
flux from t− 1 to t or the heat consumption over the time interval t− 1 to t.

The heat transfer related to a wall consists of convection in the boundary layers and
conduction trough the wall. It is assumed that when the sampling period is one hour
as in this study the dynamics of the boundary layers can be neglected. Furthermore
it is clear that the ambient air temperature Ta, wind speed W , and solar radiation
orthogonal to the wall R0 must be low-pass filtered. Also, since this filter is related to
the materials of the wall the same filter can be used for all three variables. Furthermore,
it is reasonable to assume that the dynamics of the walls behaves such that the transfer
function H1(q) will have real and positive poles only. Assuming a fairly constant indoor
temperature results in the following equation describing the approximate dynamics of
a wall

Q1,t = U1(H1(q)Wt)[Ti,t −H1(q)Ta,t]− ε1
U1(H1(q)Wt)

h01(H1(q)Wt)
H1(q)Rwall

0,t , (4.7)

where Q1,t is the energy transfered trough the wall during the hour starting at t − 1
and ending at t, Ti,t is the (unknown) indoor temperature, Ta,t is the ambient air
temperature, Wt is the wind speed, and Rwall

0,t is the solar radiation orthogonal to the
wall. The climate variables are measured as averages over the preceding 10 minutes.

For the energy transfer trough a window it evident that the dynamics consists of the
dynamics of the glass and air in the window and on the dynamics of indoor building
elements (floor, indoor walls, etc.) which heats the air after being heated by the solar
radiation. Consequently, two transfer functions are needed to describe the approximate
dynamics of the energy transfer trough a window. However, since the sampling interval
is one hour the dynamics related to the window glass is neglected. Again, assuming
a fairly constant indoor temperature results in the following equation describing the
approximate dynamics related to a window

Q2,t = −ε2H2(q)Rwin
0,t + U2(Wt)[Ti,t − Ta,t], (4.8)

where Q2,t is the energy which, due to the windows, is needed during the hour starting
at t−1 and ending at t to maintain the indoor temperature at Ti,t and Rwin

0,t is the solar
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radiation orthogonal to the window. The remaining variables are described above. Note
that the solar radiation must enter trough the window and heat e.g. the floor before
it affects the energy needed to maintain the indoor temperature. For this reason Q2,t

is not the energy transfered trough the window during the time period ranging from
t− 1 to t, but the energy low-pass filtered by the floor, indoor walls etc.

It seems plausible that the slowest dynamics are related to H1(q) followed by H2(q).
Using values in (Hansen et al. 1987) it can be deduced that the heat conduction trough
a window can easily be 4-8 times as large at the heat conduction trough a wall of the
same size. For this reason it must be expected that the functions U1(·) and U2(·) are
comparable in magnitude.

With respect to the heat loss due to ventilation it will be assumed that the dynamics
are negligible when a sampling interval of one hour is used

Q3,t = C3(Ta,t)V̇3(Wt)[Ti,t − Ta,t], (4.9)

where Q3,t is the energy which, due to the windows, is needed during the hour starting
at t − 1 and ending at t to maintain the indoor temperature at Ti,t. The remaining
variables are described above.

Note that because the climate measurements are averages over the last 10 minutes, since
these are only measured at one location (Taastrup), and since the heat consumption is
related to a large geographical area (København, Roskilde, Solrød) it is possible that,
for both (4.8) and (4.9), low-pass filtering will be advantageous. An obvious first step
would be to replace each climate variable Xt with (Xt +Xt−1)/2.

4.3 The heat consumption of an area

The heat consumption of an area consists of both heat loss to the surroundings QL,t =
Q1,t + Q2,t + Q3,t, i.e. the sum of (4.4), (4.5), and (4.6), “free” heat QF,t coming from
e.g. electrical equipment but also from humans, and energy needed for hot tap water
QW,t. The energy needed for room heating QH,t can be expressed as

QH,t = [QL,t −QF,t]+. (4.10)

The truncation of negative values is used since when the quantity inside the squared
brackets gets negative the indoor temperature will increase or ventilation will be used
to prevent this.
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Since an area is considered it seems natural to define Rwall
0,t and Rwin

0,t , using the fraction
of walls δwallr (φ) with azimuth angle φ, the corresponding fraction of windows δwinr (φ),
and the solar radiation R0,t(φ) on a vertical plane with azimuth angle φ:

Rwall
0,t =

1

360o

∫ 360
o

0

δwallr (φ)R0,t(φ)dφ (4.11)

Rwin
0,t =

1

360o

∫ 360
o

0

δwinr (φ)R0,t(φ)dφ (4.12)

It must be expected that δwall(·) is more constant than δwin(·).

Let δc,t be the fraction of consumers reacting on the climate, and let δp,t be the fraction
of the potential consumption active at time t, i.e. δp,t accounts for holidays and δc,t
accounts for the fact that during the summer almost no consumers react on the climate
and that they do not all start / stop reacting on the climate at the same time of year.
The dependence on holidays might be negligible since it will to a large extend only
affect the demand for hot tap water. If assuming that δp,t only affects the consumption
of hot tab water and free heat the total heat consumption Qt over the hour starting at
t− 1 and ending at t can be expresed as

Qt = δc,t[QL,t − δp,tQF,t]+ + δp,tQW,t. (4.13)

4.4 Identifiable model

The quantities of the model defined by (4.7), (4.8), (4.9) (4.11), (4.12), and (4.13) can
not be estimated with the measurements available, which are the total heat consump-
tion Qt, the ambient air temperature Ta,t, the wind speed Wt, and the global radiation
Rg,t. The aim of this section is to reach a model structure containing quantities which
can be estimated from the data. It will be assumed that the truncation in (4.13) can
be neglected since the truncation will only become active a few times during the spring
(δc,t will be close to zero during the summer period). Therefore the model for the total
heat consumption can be expressed as

Qt = δc,tQL,t − δc,tδp,tQF,t + δp,tQW,t. (4.14)

In the model Rwall
0,t and Rwin

0,t are unknown. If R0,t(φ) are known then in principle
δwallr (φ) and δwinr (φ) can be estimated by approximating the integral by a finite sum
and using local regression together with backfitting. However, it is assumed that this
is far too ambitious for practical use. The approach in this project has therefore been
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to replace both Rwall
0,t and Rwin

0,t with the global radiation or with a variable which can
be calculated from the global radiation, solar evaluation, and time of the year. In the
following this quantity will be denoted Rt. Note that this will distort ε1 and ε2 by a
factor. Using (4.7), (4.8), (4.9), and (4.14) the total heat consumption can be expressed
as

Qt = δp,tQW,t − δc,tδp,tQF,t − δc,tε2H2(q)Rt

+ δc,tU1(H1(q)Wt)Ti,t − δc,tU1(H1(q)Wt)H1(q)Ta,t

− δc,tε1
U1(H1(q)Wt)

h01(H1(q)Wt)
H1(q)Rt

+ δc,tU2(Wt)Ti,t − δc,tU2(Wt)Ta,t

+ δc,tC3(Ta,t)V̇3(Wt)Ti,t − δc,tC3(Ta,t)V̇3(Wt)Ta,t. (4.15)

If the dependence of C3 on Ta,t is neglected, and if it is assumed that the heat needed
for hot tap water QW,t and the “free” heat QF,t depend on the time of day h24

t and on
the type of day Υt the following model follows from (4.15)

Qt = δh,tµ(h24
t ,Υt) + δc,ta20H2(q)Rt

+ δc,ta11(H1(q)Wt) + δc,ta12(H1(q)Wt)H1(q)Ta,t

+ δc,ta10(H1(q)Wt)H1(q)Rt

+ δc,ta21(Wt) + δc,ta22(Wt)Ta,t, (4.16)

Alternatively if the dependence of C3 on Ta,t is included then a21(Wt)+a22(Wt)Ta,t must
be replaced by g(Wt, Ta,t) and possibly the solar radiation should also be included as
an argument. In (4.16) δh,t is used instead of δc,t and δp,t in δp,tQW,t − δc,tδp,tQF,t. If
µ(·, ·) is modelled by a linear model and if the parameters of the transfer functions
H1(q) and H2(q) are known, then (4.16) is a varying-coefficient model as described by
Hastie & Tibshirani (1993). It is noted that the coefficient-functions are time-varying.
Table 4.1 summarizes the interpretation of the coefficient-functions of (4.16).

The initial investigation of the model (4.16) will be complicated if the variation over
time is to be taken into account. Instead a (winter) period in which it is reasonable
to neglect the time variation will be identified and the initial investigation will be
performed on data from this period only. Without the time-variation the model will
still be somewhat complicated to investigate since, as mentioned above, there do not
seem to be an obvious parametrization for the dependence of the coefficients on the
wind speed. If the transfer-functions are known the model is a varying-coefficient model
as described by Hastie & Tibshirani (1993) and it can be separated into a linear model
and two conditional parametric models, see Sections 3.1 and 3.2. For this reason it
seems obvious to start the analysis with the part of the model which is expected to
be most important. It is expected that the conditional parametric model describing



4.4. IDENTIFIABLE MODEL 41

Coefficient Interpretation Except for a
δh,tµ(h24

t ,Υt) δp,tQW,t − δc,tδp,tQF,t level
δc,ta20 −δh,tε2 factor (pos.)
δc,ta11(H1(q)Wt) δc,tU1(H1(q)Wt)Ti level
δc,ta12(H1(q)Wt) −δc,tU1(H1(q)Wt) –

δc,ta10(H1(q)Wt) −δc,tε1 U1(H1(q)Wt)
h01(H1(q)Wt)

factor (pos.)

δc,ta21(Wt) δc,t(U2(Wt) + C3V̇3(Wt))Ti level

δc,ta22(Wt) −δc,t(U2(Wt) + C3V̇3(Wt)) –

Table 4.1: Interpretation of the coefficient-functions in (4.16).

the heat transfer trough the wall will be predominant. Hereafter, the model can be
extended with the linear model, followed by the conditional parametric model intended
for the description of the ventilation, i.e. the last line of (4.16). Finally, the model may
be extended further based on an analysis of the model error.
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Chapter 5

Modelling the heat consumption

In Chapter 4 the basic structure of the relation between climate and heat consumption
was derived based on physical considerations. However, many aspects of the model
was left unknown. This chapter deals with identification of these parts of the model,
based on data from a period of time in which it is reasonable to assume that all
consumers are reacting on the climate, cf. Section 4.3. Section 5.1 is concerned with the
identification of such a period. Based on this period an initial model only considering
the heat transfer trough walls is considered in Section 5.2. Hereafter, the model is
extended in Sections 5.3 and 5.4 to include all terms considered in Chapter 4. Based
on an investigation of the model errors the correlation structure of the error term is
considered in Section 5.5. In Section 5.6 a non-causal model is considered. Estimates
obtained using different methods of estimation are compared in Section 5.7 and to
guide the selection of the final model some statistical hypothesis tests are considered
in Section 5.8. Finally, in Section 5.9, the diurnal variation is re-modelled with the aim
of reducing the number of parameters used in this part of the model.

It is noted that the time-variation of the parameters are not considered in this chapter.
Instead it is handled by the adaptive estimation used in Chapter 6. If not stated other-
wise in this chapter outliers for the heat consumption data are treated as missing values
and for the climate data the missing values and outliers are replaced by appropriate
values, cf. Chapter 2.
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5.1 Period without time-variation

To a large extend the heat consumption follows the ambient air temperature. From
previous studies (Nielsen & Madsen 1997, Section 8.3.2) it is known that the dynamic
response on the temperature can be well described by a transfer-function with one pole
at approximately 0.93. Here it is further assumed that the transfer-function has no
zeros. Figure 5.1 shows a cave-plot (Becker, Clark & Lambert 1994) of 0.07

1−0.93q−1Ta,t
and a smoothed version of the heat consumption. The smoothed heat consumption is
created using a local quadratic approximation in time and a fixed bandwidth of three
days. Using this smoother noise and diurnal variation are removed without introducing
a phase-shift. The cave-plot is constructed so that if the dependence of the smoothed
heat consumption on the filtered air temperature is linear and constant over time then
the vertical distance between the curves is constant. This is accomplished by regressing
the smoothed heat consumption on the filtered air temperature and obtaining the
transformed temperature as the fitted values1.
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Figure 5.1: Cave plot of low-pass filtered air temperature and smoothed heat consump-
tion. The vertical lines indicate 10Oct95:00:00 and 15May96:24:00, respectively.

From the plot it is seen that during the summer period there is very limited response
on the temperature but at some stage during the autumn the heat consumption starts
to follow the ambient air temperature. Except for a few occasions the difference be-
tween the curves are approximately constant during the period ranging from 1 October
1995 until 15 May 1996, indicating that in this period the time variation can be ne-

1More details can be found under the heading “Cave Plots” at the URL
http://www.imm.dtu.dk/∼han/pub/caveplot

http://www.imm.dtu.dk/~han/pub/caveplot
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glected. This is further confirmed by Figure 5.2 which shows monthly scatter-plots of
temperature and consumption and by Figure 5.3 in which estimates of the time-varying
intercept c0(t) and slope c1(t) in the model

Qt = c0(t) + c1(t)
0.07

1− 0.93q−1
Ta,t + et, (5.1)

are depicted. Qt is the heat consumption at time t and et is the corresponding model
error. The estimates are based on local linear approximations and a fixed bandwidth
of 30 days. The estimates are calculated using LFLM (Nielsen 1997). In conclusion the
period ranging from 1 October 1995 until 15 May 1996 will be used to build a model
in which the time-variation is neglected.
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Figure 5.2: Heat consumption versus ambient air temperature, separately for each
month.
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Figure 5.3: Estimates of intercept (solid) and slope (dashed) in model (5.1). The
vertical lines indicate 1Oct95:00:00 and 15May96:24:00, respectively.

5.2 Initial model

As described in the last part of Section 4.4 the most important part of the model is
expected to be the one primarily related to heat transfer trough a wall. In this section
the rest of model (4.16) will be neglected and thus the section will be based on the
model

Qt = a11(H1(q)Wt) + a12(H1(q)Wt)H1(q)Ta,t

+ a10(H1(q)Wt)H1(q)Rt + et, (5.2)

where Qt is the heat consumption at time t, Wt is the wind speed, Ta,t is the ambient
air temperature, Rt is the solar radiation on a square pillar as described in Chapter 2,
et is the model error, H1(q) is a rational transfer function, and a··(·) are unknown
coefficient-functions which will be assumed to be smooth. Note that the interpretation
of the coefficient-functions as indicated by Table 4.1 on page 41 is not strictly valid
since some parts of the original model not included in (5.2) will affect the estimates
of a··(·). However, the data is approximately balanced with respect to the diurnal
variation and therefore the diurnal variation will not affect the estimates to any large
extend. The data is not balanced with respect to the type of day and therefore the
overall level of the heat consumption included in the estimate of the function a11(·)
will be a weighted average over the types of days. Only data from the period ranging
from 1 October 1995 until 15 May 1996 is used in this section.

When H1(q−1) is known (5.2) is a conditional parametric model and the functions
a··(·) can be estimated using local regression techniques. As mentioned in Section 5.1
previous work has indicated that

H1(q) =
1− φ

1− φq−1
, (5.3)
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with φ = 0.93, is an appropriate choice. This particular transfer-function will be used
when investigating the estimated functions for different choices of bandwidth and local
approximating polynomial. From model (4.16) and Table 4.1 it is expected that a10(·)
and a12(·) are negative and that a11(·) is positive. Furthermore, the exclusion of parts
of (4.16) in (5.2) is unlikely to affect the sign of the estimated functions.

Figure 5.4 shows the estimates of the intercept and slopes in model (5.2) versus
0.07

1−0.93q−1Wt, using local linear approximations and nearest neighbour bandwidths 10%,

20%, . . . , 90%. For the lower bandwidths the estimates show a very erratic behaviour,
probably due to (local) collinearity in the underlying linear models which is fitted
locally to the filtered wind speed.
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Figure 5.4: Bandwidth and estimates of intercept and slopes in model (5.2) versus
low-pass filtered wind speed, using local linear approximations and nearest neighbour
bandwidths 10%, 20%, . . . , 90%. The curves corresponding to 50% are indicated by a
bold line.
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To guide the selection of the bandwidth both 5-fold and 100-fold cross-validation is
performed, cf. Section 3.6, and the results are shown in Figure 5.5. For the 5-fold
cross-validation the set number is indicated on the plot and the individual sets are
connected across bandwidths. For the 100-fold cross-validation the individual sets are
also connected. The mean and median scores of the 100-fold cross-validation are shown
in Figure 5.6.

The results from the 5-fold cross-validation indicate that the validation sets are inho-
mogeneous, probably because (5.2) with the particular choice of transfer-function only
describes part of the variation in the data. Both the 5-fold and 100-fold cross-validation
indicate that low bandwidths are inappropriate and that for almost any of the vali-
dation sets bandwidths of approximately 40% or larger has equivalent performance.
The mean scores of the 100-fold cross-validation depicted in Figure 5.6 indicate that
on average a bandwidth of 90% (or larger) will be appropriate. However, due to the
inhomogeneity of the validation sets it is desirable to neglect large deviations at this
stage. This is accomplished by the median scores which indicate that a bandwidth
of 60% is near-optimal with respect to both RMS and MAE. However, to explore the
influence of the pole φ in (5.3) a bandwidth of 50% will be used since for other poles
than φ = 0.93 a slightly more flexible smoother might be appropriate.

Using a local linear smoother and a nearest neighbour bandwidth of 50% the mean
absolute error (MAE) and root mean square error (RMS) is calculated for different
values of the pole φ in (5.3) and the result is shown in Figure 5.7. On the figure “o”
marks the pole with the minimum RMS and “×” marks φ = 0.94. Based on the figure
0.94 is taken as an estimate of φ in (5.3). With respect to MAE this pole is near-
optimal, although MAE indicates that 0.95 is more appropriate. However, the two
poles have virtually the same MAE. The value of R2 for the resulting pole is 90.8%.
The estimates of the coefficient-functions are not shown since they are very similar to
the ones shown in bold on Figure 5.4.

5.3 Adding diurnal and direct solar radiation

In this section the model (5.2) with H1(q) = 0.06
1−0.94q−1 is extended to include the part

of (4.16) which, except for H2(q), is linear in the parameters:

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a11(H1(q)Wt) + a12(H1(q)Wt)H1(q)Ta,t

+ a10(H1(q)Wt)H1(q)Rt + et, (5.4)
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Figure 5.5: Mean Absolute Error (MAE) and Root Mean Square error (RMS) versus
bandwidth for 5-fold (top) and 100-fold (bottom) cross-validation of predictions from
(5.2) using nearest neighbour bandwidths 10%, 20%, . . . , 90%.
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Figure 5.6: Mean RMS (“1”), mean MAE (“2”), median RMS (“3”), and median MAE
(“4”) versus bandwidth for the 100-fold cross-validation of predictions from (5.2).
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rugs on the horizontal axis indicate the values of the poles evaluated.

where the diurnal variation and the overall level is combined into µ(·, ·) and modelled
with a free parameter for each hour of the day and with separate parameters for (1)
working days, (2) half-holy days, and (3) holy days. The actual parametrization is
obtained as helmet contrasts (Statistical Sciences 1995a) corresponding to main effects
and interaction of factors describing the time of day (0,1,. . . ,23) and the type of day
(1,2,3). The remaining quantities are defined as for (5.2).

Initially H2(q) is modelled as a Finite Impulse Response (FIR) filter and the parameter
a20 is included in the filter

a20H2(q) =

24∑

i=0

h2,iq
−i (5.5)

In this way the model becomes semi-parametric, cf. the definition in Section 3.2, and
the linear part being µ(h24

t ,Υt)+a20H2(q)Rt. A maximum lag of 24 is chosen based on
(Nielsen & Madsen 1997, Section 8.3.3). As for (5.2) the coefficient-functions will be
estimated using local linear approximations and a 50% nearest neighbour bandwidth.
The estimates of h2,0, h2,1, . . . , h2,24 are depicted in Figure 5.8. Figure 5.9 shows the
estimated coefficient-functions together with the estimates obtained using (5.2) and
the estimates obtained under the assumption that the coefficient-functions are linear
(in which case the model becomes a linear model). The root mean square (RMS) of the
residuals of the semi-parametric fit is 91.53 GJ/h, and when the coefficient-functions
are restricted to be linear this increase by less that 0.5 GJ/h to 92.00 GJ/h. This can
hardly justify the complexity of the estimated coefficient-functions. The only software
known to us which can estimate in models like (5.2) and which is used as an element
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for estimation in models like (5.4) is LFLM 1.0 (Nielsen 1997). When the number
of observations is large it is not feasible to use the software for calculation of the
degrees of freedom of the smooth. However, by observing that the degrees of freedom
is independent of the response (Hastie & Tibshirani 1990, Nielsen 1997) it is possible to
get an approximation, using the function loess() in S-PLUS 3.4 (Statistical Sciences
1995b). A local line smoother with a 50% nearest neighbour bandwidth is applied to
estimate a non-parametric regression function with H1(q)Wt as the explanatory variable
and an arbitrary response. The approximate degrees of freedom of this smooth is 3.8.
As an approximation the degrees of freedom of the smoother used in (5.4) is then taken
to be 3×3.8−1 = 10.4, note that one is subtracted since the smooth is required to sum
to zero over the observations. Requiring, the coefficient-functions to be linear reduces
the degrees of freedom to 1 + 2 + 2 = 5, i.e. (92.00− 91.53)/(10.4− 5) ≈ 0.09 units of
root mean square per degree of freedom.

The estimated functions, together with the values of RMS mentioned above indicate
that the estimates from the semi-parametric model has high variance for values of
H1(q)Wt above 5 m/s. However, the model is not complete and therefore it does
not make sense to bootstrap the residuals (Efron & Tibshirani 1993) and re-fit the
semi-parametric model 100 or 200 times to obtain pointwise confidence intervals of
the coefficient-functions. Furthermore, this seems unpractical in that with our current
implementation and equipment2 it typically takes about 20 minutes to fit the model.
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Figure 5.8: Estimated impulse response of a20H2(q) based on the model consisting of
(5.4) and (5.5).

Turning to the estimated impulse response depicted in Figure 5.8 it is noted that this
may be well approximated by the following rational transfer-function

a20H2(q) =
b200 + b201q

−1 + b202q
−2

1 + a201q−1 + a202q−2
. (5.6)

2HP 9000/KF460 with HPPA 8100 CPUs (Specfp ≈ 18) and 1 GB of memory.
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Figure 5.9: Non-parametric estimates (50% local lines) of the functions a11(·), a12(·),
and a10(·) in the model consisting of (5.4) and (5.5) (dotted), globally linear functions
(solid), and non-parametric estimates corresponding to model (5.2) (dashed). The
estimates are shifted vertically to start at the same point.

To fit this transfer-function first the partial residuals (Hastie & Tibshirani 1993) Qp,t

are calculated as

Qp,t = Qt − µ̂(h24
t ,Υt)

− â11(H1(q)Wt)− â12(H1(q)Wt)H1(q)Ta,t

− â10(H1(q)Wt)H1(q)Rt, (5.7)

for both the semi-parametric model and for the linear model, separately. Hereafter the
transfer-functions are estimated using the model

Qp,t =
θ20 + θ21q

−1 + θ22q
−2

1 + φ21q−1 + φ22q−2
Rt + et. (5.8)

Since the software available, proc arima of SAS/ETS (SAS Institute Inc. 1993), can
not handle missing values the partial residuals are calculated using data Qt in which
missing values have been replaced as described in Chapter 2. The impulse response of
the two estimates of the transfer-function are shown in Figure 5.10 together with the
estimates obtained using the FIR-filter (5.5). It is seen that the approximations are
good and that restricting the coefficient-functions to be linear results in more weight
on lag zero and less on higher lags, as compared to the semi-parametric model.

After fixing the filters H1(q) and H2(q) obtained so far, the model (5.4) is re-fitted
to the data (note that this adjusts the stationary gain of a20H2(q)). Using a semi-
parametric model the root mean square (RMS) of the residuals is 91.78 GJ/h and for
the linear model the corresponding value is 92.30 GJ/h, i.e. a difference of 0.52 GJ/h,
which is a small increase compared to the estimated FIR-filter. Table 5.1 summarizes
the values of RMS obtained for the models. It is noted that the total increase in RMS
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Figure 5.10: Estimated impulse response using (5.8) for the semi-parametric fit (left)
and the linear model (right). Circles indicate estimates obtained using a FIR-filter
(5.5).

when comparing the a semi-parametric model using the FIR-filter to a linear model
using the estimated filter (5.8) is 0.77 GJ/h, whereas there is a huge difference in the
degrees of freedom of the two models. Neglecting the difference in degrees of freedom
originating from the coefficient-functions results in approximately 0.04 GJ/h for each
degree of freedom. It therefore seems reasonable to use the linear model with the filters
H1(q) and H2(q) fixed as described above. However, since fitting the linear model is
quite fast and since H1(q) is fully characterized by its pole it is feasible to calculate
RMS of the residuals for other values of the pole than 0.94 as used above. It is chosen
to investigate values of the pole in the range 0.92 to 0.96 in steps of 0.001. For 0.934
the minimal RMS of 92.12 GJ/h is obtained. This pole will be used in the following,
although the improvement is small. It is noted that the pole is also near-optimal with
respect to the mean absolute error.

SP LM Increase
FIR 91.53 92.00 0.47
RTF 91.78 92.30 0.52
Increase 0.25 0.30 0.77

Table 5.1: Cross-tabulation of values of RMS obtained using finite impulse response
(FIR) and rational transfer function (RTF) filters and semi-parametric (SP) and linear
(LM) models. In both cases the pole 0.94 is used in H1(q).

The parameters of the linear model and the parameters of the filters can be estimated
simultaneously using non-linear optimization. It is noted that when the coefficient-
functions of (5.4) are restricted to be linear, then given the transfer-functions H1(q)
and H2(q) the model can be parametrized so that it is linear in the parameters. For
this reason, given the transfer-functions, the least squares estimate of the parameter
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vector has a closed-form solution and can be calculated quickly and reliably. It is
therefore obvious to find the least squares estimate of the model including transfer-
functions by letting the non-linear minimization search trough the possible values of
the parameters of the transfer-functions and find the least squares estimates of the
remaining parameters using the least squares solution of the linear model given the
transfer-functions.

It is important that the transfer-functions are parametrized so that e.g. the stationary
gain can be adjusted by the linear model. For this technical reason the following
parametrizations are used

H1(q) =
1

1− φ11q−1
, (5.9)

and

H2(q) =
1 + θ21q

−1 + θ22q
−2

1 + φ21q−1 + φ22q−2
. (5.10)

Initial estimates of θ·· and φ·· are obtained rescaling coefficients in the filters identified
above. It is noted that since the coefficient-functions are linear and since the solar
radiation are filtered both trough H1(q) and H2(q) a singularity may exist for some
values of the parameters of the transfer-functions. However, near the initial estimates
the dynamics of H1(q) and H2(q) are very different and a singularity is unlikely to be
found using these initial estimates.

The non-linear minimization is performed using the function nlminb() of S-PLUS
3.4 (Statistical Sciences 1995b) and since the possible correlation of the noise is not
modelled missing values of Qt is just excluded from the calculations. The minimiza-
tion routine is not able to find any direction away from the initial estimates in which
the gradient of the least squares criterion is different from zero and hence the initial
estimates can be considered the estimates corresponding to the full non-linear model.

In conclusion the model selected so far is (5.4) with the coefficient-functions restricted
to be linear and the filters

H1(q) =
0.066

1− 0.934q−1
, (5.11)

and

H2(q) =
−0.350 + 0.612q−1 − 0.226q−2

1− 1.703q−1 + 0.739q−2
, (5.12)

where both are normalized to have unit stationary gain. This model has an value of
RMS of 92.12 GJ/h.

The estimated diurnal variation is depicted in Figure 5.11 for the model just mentioned
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and for the semi-parametric model with

H1(q) =
0.06

1− 0.94q−1

and

H2(q) =
−0.163 + 0.311q−1 − 0.117q−2

1− 1.691q−1 + 0.721q−2
,

where H2(q) corresponds to the semi-parametric fit on Figure 5.10. It is noted that with
respect to the diurnal variation the models result in practically the same estimates.
Furthermore, all curves have practically common values at 00:00 (24:00) although this
restriction is not implied on the estimates. This is reassuring since in the real system
no discontinuity is expected when going from, say, Friday 24:00 to Saturday 00:00.
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Figure 5.11: Diurnal variation for working days (solid), half-holy days (dotted), and
holy days (dashed) for the linear version of (5.4) with (5.11) and (5.12) and for the semi-
parametric model using H1(q) = 0.06/(1− 0.94q−1) and H2(q) = (−0.163 + 0.311q−1−
0.117q−2)/(1− 1.691q−1 + 0.721q−2).

5.4 Adding heat transfer trough windows and ven-

tilation

In this section the linear model described in the end of Section 5.3 is modified to take
into account the heat loss due to ventilation and heat transfer by convection/conduction
trough windows. Of cause a part of this effect is already described by the low-pass
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filtered climate variables in the model. As argued in Section 4.2 the dynamic response
is expected to be very fast. For this reason the first part of this section will consider
a non-dynamic response and examine if the corresponding coefficient-functions can be
linearized. Since the climate is measured at only one location (Taastrup) and since the
heat consumption is related to a large geographic area it may however be advantageous
to filter the climate variables. This is also considered in this section.

5.4.1 Non-dynamic response

The linearized version of (5.4) with an added possible non-linear static response on
wind speed and temperature related to heat transfer trough windows and ventilation
is described by the model

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a21(Wt) + a22(Wt)Ta,t + et, (5.13)

where H1(q) and H2(q) are defined in Eqs. (5.11) and (5.12). Note that the constants
from the linearization of the coefficient functions are now merged with the overall level
contained in the diurnal variation µ(·, ·).

As usual the climate variables are filtered using observations in which missing values
and outliers have been replaced by appropriate values, cf. Chapter 2, whereas ob-
servations (rows) corresponding to missing values of Qt are just excluded. Since the
response due to heat transfer trough windows and ventilation (the last line of (5.13))
is non-dynamic it is possible to estimated the model after exclusion of observations in
which one or more of Wt, Ta,t, and Qt are missing. However, to obtain values of RMS
comparable with the results of the previous sections climate variables in which missing
values are replaced with appropriate values will be used.

Linearization of a21(·) and a22(·) and subsequently estimation yields a value of RMS
of 84.80 GJ/h. Compared to the model selected in Section 5.3, for which RMS =
92.12 GJ/h, this is a relatively large improvement obtained using only three extra
parameters. Since the climate variables are only averages over the last 10 minutes of
the hour the average of the two latest values might be more appropriate to use instead
of Wt and Ta,t in the last line of (5.13). However, the values of RMS obtained in this
case is 86.41 GJ/h. This may be due to the averaging already obtained by the filtering
of climate variables.
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When excluding observations corresponding to missing values of Wt or Ta,t a RMS of
82.79 GJ/h is obtained. This indicates the some of the observations in which missing
values are replaced with appropriate values may be quite influential. To investigate
this aspect the elements on the diagonal of the hat-matrix, cf. (Jørgensen 1993), are
investigated. These values are the partial derivative of the fitted values with respect
to the response, i.e. ∂Q̂t/∂Qt, and for a linear model these do not depend on the
response, i.e. Qt, see (Ye 1998, Section 2). In Figure 5.12 the values are displayed and
values corresponding to missing values of Wt or Ta,t are indicated by “×” and by rugs
on the horizontal axis. Venables & Ripley (1997, p. 204) state that large values are
two or three times the average. Here no values are larger than three times the average,
but quite a few are larger than two times the average. However, the observations
corresponding to missing values as described above do not seem to be more influential
than many other observations. Therefore the predictions of the model will not be
seriously affected by whether these are included or not. To be able to compare results
with the previous sections the observations considered are therefore not excluded.

A strong cyclic pattern is observed in Figure 5.12. Investigation show that practically
all values above two times the average occur on half-holy days (mainly Saturdays,
778 in all) and on these days practically all values are above two times the average.
Similarly the values just below two times the average is almost all related to holy days
(mainly Sundays, 948 in all) and the low values are related to working days (3485 in
all). There numbers are related to the total number of days in each group.
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Figure 5.12: Elements on the diagonal of the hat-matrix. The dotted line marks two
times the average.

To investigate the possible advantage of non-linear modelling of a21(·) and a22(·) in
(5.13) these are estimated using a local linear smoother and a 30% nearest neighbour
bandwidth. The equivalent number of parameters of a21(Wt) + a22(Wt)Ta,t is approx-
imately 9.5, calculated using the function loess of S-PLUS 3.4 (Statistical Sciences
1995b), compared to 3 degrees of freedom for the linerized model. However, the RMS of
the residuals is only improved marginally to 84.18 GJ/h (compare with 84.80 GJ/h).
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For this reason it is concluded that it is appropriate to use the linearized version of
(5.13).

5.4.2 Dynamic response

As mentioned in the beginning of Section 5.4 a dynamic response corresponding to heat
transfer trough windows and ventilation might be relevant. Again, it seems reasonable
that both the wind speed and ambient air temperature should be filtered trough the
same unit-gain transfer-function, called H3(q) below. As shown in the previous sub-
section (5.13) can be linearized with a very small loss in terms of RMS of the residuals.
Consequently the model becomes

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211H3(q)Wt + a220H3(q)Ta,t + a221H3(q)WtH3(q)Ta,t + et. (5.14)

Note that H3(q)WtH3(q)Ta,t 6= [H3(q)]2WtTa,t. For this reason identification of H3(q)
by use of a FIR-approximation is complicated. When excluding the term WtTa,t from
the linearized version of the previous model (5.13) the RMS of the residuals increase
slightly by 0.04 GJ/h to 84.84 GJ/h. It therefore seems obvious to conclude that for
identification of H3(q) the term H3(q)WtH3(q)Ta,t can be disregarded. Furthermore,
if the wind speed and the ambient air temperature is filtered trough possibly different
transfer-functions a FIR-approximation will result in a model linear in the parameters
when H1(q) and H2(q) are assumed known. Here (5.11) and (5.12) will be used and
the FIR-filters will both include lags 0–24. In Figure 5.13 the estimated coefficients of
the two FIR-filters are depicted. It is evident that lags zero and one are far the most
important ones, especially for the ambient air temperature.

Since only two lags are identified it is possible to reenter the interaction term and fit
the model

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1

+ a2,00WtTa,t + a2,01WtTa,t−1 + a2,10Wt−1Ta,t + a2,11Wt−1Ta,t−1 + et. (5.15)

The RMS of the residuals of this model is 81.46 GJ/h. The model has five degrees
of freedom more than the linear model obtained in Section 5.4.1 for which RMS =
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Figure 5.13: Estimated impulse response corresponding to heat transfer trough win-
dows and ventilation.

84.80 GJ/h. Dropping the interaction terms in the last line of (5.15) results in RMS =
81.65 GJ/h, consequently these four terms contribute only marginally to the quality
of the fit. However, to retain the physical interpretation of the model the terms will
be kept in the model.

5.5 Noise model

Figure 5.14 shows the residuals and the sample autocorrelation function (SACF), the
sample partial autocorrelation function (SPACF), and the sample inverse autocorre-
lation function (SIACF), cf. Section 3.7, of the residuals from (5.15). These esti-
mates indicate that an autoregressive model can account for most of the correlation in
the residuals. SPACF point towards an AR(3) model, whereas SIACF indicates that
an AR(1) model should be sufficient. The estimated autocorrelations (SACF) of the
residuals from AR-models of order 1–3 fitted to the residuals from model (5.15) via
maximum likelihood (assuming the innovations to be iid. Gaussian) are depicted in
Figure 5.15. It is seen that an AR(3) model is needed to remove the autocorrelation at
the low lags, but in all cases correlation exists for higher lags and seems to be grouped
around lags 24, 48, etc. In Figure 5.16 SACF, SPACF, and SIACF are shown for the
residuals from the AR(3) model. These indicate that the residuals from model (5.15)
may be more appropriately modelled by

(1− a1q
−1 − a2q

−2 − a3q
−3)(1− a24q

−24)rt = (1− c1q
−1)et, (5.16)

where rt is the residuals from model (5.15) and et is iid. N(0, σ2). The SACF of {êt}
from this model is shown in plot A in Figure 5.17. Many significant lags are found,
e.g. lag 2, 23, and 25, this indicates that the mixing of parameters related to low and
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high lags is inappropriate. This leads to the model

(1−
∑

i∈{1:3,24:27}
aiq
−i)rt = (1− c1q

−1)et, (5.17)

where e.g. 1 : 3 denotes 1, 2, 3. Plot B in the aforementioned figure shows the result.
Still an significant value is observed at lag 23 and therefore the MA-part is replaced
by an autoregressive term in lag 23:

(1−
∑

i∈{1:3,23:27}
aiq
−i)rt = et. (5.18)

The result, depicted in plot C, is quite satisfactory. However, the model has many
parameters at high lags. If deleting lags larger than 24 as in

(1−
∑

i∈{1:3,23,24}
aiq
−i)rt = et, (5.19)

the result shown in plot D is obtained. Due to the fewer parameters this is of course
slightly inferior C, but (5.19) will be used since it contains only five parameters. Note
that also (5.16) contain five parameters.
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Figure 5.14: Residuals from model (5.15) together with estimated autocorrelation func-
tions of the residuals. The dotted lines marks an approximate 95% confidence interval
under the hypothesis of white noise.
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Figure 5.15: Estimated autocorrelations of the residuals from three AR-models fitted to
the series shown in Figure 5.14. The dotted lines marks an approximate 95% confidence
interval under the hypothesis of white noise.
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Figure 5.16: Estimated autocorrelation functions of the residuals from an AR(3) model
fitted to the series shown in Figure 5.14. The dotted lines marks an approximate 95%
confidence interval under the hypothesis of white noise.
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Figure 5.17: Estimated autocorrelation functions of the residuals from models A: (5.16),
B: (5.17), C: (5.18), and D: (5.19) fitted to the series shown in Figure 5.14. The dotted
lines marks approximate 95% confidence intervals under the hypothesis of white noise.
Interesting significant lags are indicated.
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From the above it is possible to formulate a complete model for the heat consumption
Qt in the VEKS area as:

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1

+ a2,00WtTa,t + a2,01WtTa,t−1 + a2,10Wt−1Ta,t + a2,11Wt−1Ta,t−1

+
1

1− a1q−1 − a2q−2 − a3q−3 − a23q−23 − a24q−24
et, (5.20)

where {et} is iid. N(0, σ2). The parameters of the model are estimated via maximum
likelihood and by conditioning on the 24 first values of Qt. Again, only data from the
period identified in Section 5.1 are used. For the regressors on the right hand side of
(5.20) data for which missing values and outliers are filled by appropriate values, cf.
Chapter 2, are used. H1(q) and H2(q) are given by (5.11) and (5.12), respectively.
For the heat consumption Qt outliers are left missing and for maximum likelihood
estimation a state-space formulation of (5.20) are used, see (Statistical Sciences 1995b)
and Section 3.1. The root mean square (RMS) of the residuals from (5.20) is 38.46
GJ/h. Comparing with the RMS of the residuals from (5.19), which is 43.71 GJ/h,
it is seen that there is a relatively large advantage from estimating the parameters
simultaneously.

The sample autocorrelation function (SACF) of the residuals from (5.20) is shown in
Figure 5.18, together with the SACF of the residuals from (5.19) fitted to the model
error (residuals) from (5.15). It is seen that both SACFs are quite similar and satisfac-
tory. However, the time series plots, shown in Figure 5.19, indicate that the variance
is non-constant.
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Figure 5.18: SACF of the residuals from (5.20) (right), and SACF of the residuals from
(5.19) (left). The dotted lines marks an approximate 95% confidence interval under
the hypothesis of white noise.
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Figure 5.19: Time series plot of the residuals from (5.20) (bottom) and (5.19) (top).

Figure 5.20 shows the sample cross correlation function (SCCF) between the climate
variables and the residuals from (5.20). The most pronounced feature is correlation of
residuals with future values of the ambient air temperature a similar feature is observed
for the solar radiation. Furthermore, there seem to be some correlation between the
residuals and solar radiation at lags 12–24 (repeated 24 hours later). The SCCFs
mentioned above can be used for model diagnostics but the transfer function which
describes how the noise process {et} enters (5.20) will complicate the interpretation of
the SCCFs so that these are difficult to use for suggesting modifications of the model.
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Figure 5.20: SCCF of the residuals from (5.20) and the three climate variables. The
dotted lines marks an approximate 95% confidence interval under the hypothesis of
uncorrelated series.
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To see this consider the simple model

Yt = H(q)Xt +
1

A(q−1)
et,

where Yt is the output, Xt is the input, et is the noise process, H(q) is a transfer-function
with known structure, and A(q−1) is a nA-order order polynomial in the backshift
operator q−1. Now, if the SCCF between {êt} and {Xt} indicates that the structure of
H(q) should be changed, this can be thought of as trying to identify the structure of
H0(q) in the model

Yt = Ĥ(q)Xt +H0(q)Xt +
1

Â(q−1)
et,

where the hat indicates that the estimated coefficients are used. The model may also
be written as

Â(q−1)Yt = Ĥ(q)Â(q−1)Xt +H0(q)Â(q−1)Xt + et,

from which it is seen that the SCCF mentioned above is more helpful in identifying
the structure of H0(q)Â(q−1) than the structure of H0(q). However, the SCCF between

{êt} and {Â(q−1)Xt} can be used for structural identification of H0(q).

If the climate variables are filtered as outlined above the SCCFs shown in Figure 5.21
are obtained. It is noted that the correlation between the residuals and solar radiation
at lags 12–24 is practically removed by the filtering of the solar radiation. On the figure
the lags with the maximum absolute correlation is indicated. For the wind speed this
maximum occurs at lag -2 and the value is considered small. Therefore the wind speed
will not be considered further at this place. For the ambient air temperature and the
solar radiation the maximum absolute correlation occurs at lag -1. Again, it is seen
that future values of the ambient air temperature and solar radiation seem to affect the
heat consumption. This is probably due to the geographically distributed consumption
and the fact that the climate variables only are measured at one location. An other
explanation could be that the consumers (local network operators) use some prediction
device combined with a heat storage facility.

When using the results obtained in the study described in this report meteorological
forecasts of the climate variables have to be used. It is natural to use, possibly weighted,
averages of meteorological forecasts over the geographical area supplied by the VEKS
transmission system. In this case non-causal models will probably be irrelevant and
therefore in this study non-causal models will not be used. It is noted that, when using
the data available in this study, this decision will lead to slightly inferior prediction
results as would have been obtained had a non-causal model been used. For the sake of
completeness, we will show the results obtained when using a simple non-causal model
in the following section.
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Figure 5.21: SCCF of the residuals from (5.20) and the three filtered climate variables.
The dotted lines marks an approximate 95% confidence interval under the hypothesis
of uncorrelated series.

5.6 A non-causal model

From Figure 5.21 for both the ambient air temperature and the solar radiation the
decline of SCCFs towards zero for decreasing lags starting at lag -1, seems be of first
order. If Xt denotes the climate variable and θi; i = 1, 2 are some parameters then

Xt = q−1 θ1

1− θ2q−1
êt,

will be able to approximate the impulse response. This can also be written as

êt =
1

θ1
Xt+1 −

θ2

θ1
Xt.

Comparing with the terms already in the model (5.20) this means that terms containing
Ta,t+1 andRt+1 should be added on the right hand side of (5.20). Therefore the following
non-causal model is obtained

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1

+ a2,00WtTa,t + a2,01WtTa,t−1 + a2,10Wt−1Ta,t + a2,11Wt−1Ta,t−1

+ aTTa,t+1 + aRRt+1

+
1

1− a1q−1 − a2q−2 − a3q−3 − a23q−23 − a24q−24
et. (5.21)

The parameters of this model is estimated via maximum likelihood as for (5.20). Fig-
ure 5.22 shows the obtained SCCFs between the residuals and the climate variables
filtered using the estimates of ai; i = 1, 2, 3, 23, 24. Comparing with Figure 5.21 it is
seen that most of the cross correlation is removed.
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Figure 5.22: SCCF of the residuals from the non-causal (5.21) and the three filtered
climate variables. The dotted lines marks an approximate 95% confidence interval
under the hypothesis of uncorrelated series.

5.7 Comparison of models and estimates

In this section the maximum likelihood estimates obtained using the model (5.20) is
compared with the least squares estimates obtained from model (5.15). It is noted that
these models have the same deterministic structure, but in (5.20) the correlation of the
noise is modelled. Results presented above indicates that the deterministic structure
and the correlation of the noise is modelled quite adequately by (5.20).

Assuming the climate to be known the in-sample long-term prediction of Qt from
(5.20) is obtained using the deterministic part of the model only. The root mean
square (RMS) of the corresponding prediction errors is 168.8 GJ/h. For (5.15) the
in-sample long-term prediction errors is just êt and the RMS of these is 81.5 GJ/h,
i.e. less than half the value obtained for (5.20). For the in-sample one step prediction
errors the opposite is true in that for (5.20) the RMS of these is 38.5 GJ/h and 81.5
GJ/h for (5.15). However, if the noise-model used in (5.20) is applied to the prediction
errors from (5.15) the RMS of the one-step prediction errors can be reduced to 46.7
GJ/h.

The results above indicate that in on-line applications a lot will be lost in terms of RMS
of long-term prediction errors using (5.20) instead of (5.15) and for short-term predic-
tion the performance of (5.15) can be improved markedly by modelling the correlation
of the prediction errors from (5.15). This is contrary to conventional statistical theory
in which maximum likelihood estimates often are considered optimal in some sense.
However, this theory is based on the assumption that the true system is of the same
structure as the model. Obviously, in situations like the one considered in this report,
some details of the true system can often not be handled by the models considered and
therefore the central assumption leading to the optimality of the maximum likelihood
estimates is violated.



5.7. COMPARISON OF MODELS AND ESTIMATES 67

The maximum likelihood estimates (MLE) in (5.20) are close to the estimates mini-
mizing the sum of squared one step prediction errors; the only difference being due to
some values of Qt being missing. Following (Ljung 1987) the least squares estimates
obtained based on (5.15) are called output error estimates (OEE) below. In Table 5.2
the OEEs and the MLEs of parameters related to climate variables are shown. Note
that the regressor rather than the name of the parameter is used to identify the esti-
mates. Except for two cases the absolute value of the MLE is closer to zero than the
absolute value of the OEE. It is also notable that the regressors for both exceptions
do not contain the ambient air temperature. In conclusion, the MLEs use the autocor-
relation of the heat consumption instead of the climate variables. Since the OEEs do
not allow for this they perform better for long-term predictions.

Regressor OEE MLE
H2(q)Rt 0.50 0.52
H1(q)Wt 39.15 38.00 ×
H1(q)Ta,t -42.40 -29.20 ×

H1(q)WtH1(q)Ta,t -2.67 -0.36 ×
H1(q)Rt -1.14 -0.52 ×

H1(q)WtH1(q)Rt -0.08 -0.11
Wt 17.18 3.93 ×
Wt−1 -10.43 0.52 ×
Ta,t -64.01 -20.17 ×
Ta,t−1 45.03 3.71 ×
WtTa,t 0.47 -0.21 ×
WtTa,t−1 -2.01 0.25 ×
Wt−1Ta,t -3.14 -0.26 ×
Wt−1Ta,t−1 4.26 -0.03 ×

Table 5.2: Maximum likelihood estimates (MLE) and output error estimates (OEE)
obtained using model (5.20) and (5.15), respectively. “×” in the rightmost column
indicates that |MLE| < |OEE|.

The OEE of the overall level is 1403.7 GJ/h and the MLE is 1320.9 GJ/h. The
diurnal variation around the overall level is depicted in Figure 5.23 also on the figure
the average deviation due to the type of day is shown. No large difference between
MLE and OEE is observed.
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Figure 5.23: Diurnal variation around the overall level for OEE (solid) and MLE
(dotted) and around the average for the particular type of day indicated by horizontal
lines.

5.8 Likelihood ratio tests

Likelihood ratio tests in the model (5.20) are performed. The results of the tests are
listed in Table 5.3. From the tests it is indicated that the short term interaction between
wind speed and ambient air temperature, i.e. the parameters a2,ij; i = 0, 1; j = 0, 1,
can be excluded from the model. This is consistent with the root mean square of the
residuals from the regression model mentioned on page 59. The test for difference
between half-holy and holy days is marginally insignificant at the 5% level. However,
by use of appropriate approximations, cf. Section 5.9, the diurnal variation can be
described by use of fewer degrees of freedom per day group. This could easily make
the aforementioned test insignificant (χ2(23) = 35.172) and therefore the difference
between half-holy and holy days are retained in the model. All the remaining tests
are significant at the 5% level. Akaike’s information criterion indicates that the model
where a2,ij = 0; i = 0, 1; j = 0, 1 should be used, i.e. (as expected) it is consistent
with the likelihood ratio test.

5.9 Remodelling the diurnal

In all the models considered so far the diurnal variation is modelled with one free pa-
rameter for each combination of hour of the day (0, 1, . . . , 23) and type of day (working,
half-holy, holy). This amounts to 72 parameters. In this section it will be investigated
if the number of parameters used to model the diurnal variation can be reduced by use
of an other parametrization of the diurnal variation. Since the models are to be used
for prediction horizons up to 72 hours the investigation will be based on least squares
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Hypothesis LR statistic df p-value
a2,00 = a2,01 = a2,10 = a2,11 = 0 2.613 4 0.624
a2,00 = a2,01 = a2,10 = a2,11 = a211,0 = a211,1 = 0 13.794 6 0.032
a2,00 = a2,01 = a2,10 = a2,11 = a220,0 = a220,1 = 0 247.053 6 0.000
Wind speed excluded from model 127.451 9 0.000
Solar radiation excluded from model 271.913 3 0.000
Ambient air temperature excluded from model 435.288 8 0.000
No diff. between half-holy and holy days 35.520 24 0.061

Table 5.3: Likelihood ratio tests of selected null hypotheses; in all cases with (5.20) as
the alternative hypothesis.

estimates in model (5.15) on page 58, but with an alternative parametrization of the
diurnal variation and with a2,ij = 0; i = 0, 1; j = 0, 1.

The parametrizations considered will be (i) harmonic expansions (Graybill 1976, Sec-
tion 8.8) and (ii) periodic B-spline bases (de Boor 1978) and Section 3.1. This have the
advantage that the resulting model is linear in the parameters. Hence, the parameters
can be estimated reliably and relatively quickly. However, the main advantage in the
context of on-line predictions is that an reliable adaptive and recursive method exists
for this kind of models. A purely non-parametric estimation of the diurnal variation for
each type of day is possible by use of a semi-parametric model, cf. Section 3.2 and 5.4,
where the smoother of the kind described in (Nielsen 1997) is applied, but with an
angular measure of distance. However, this approach will not be considered further
since we are not aware of adaptive and recursive methods for estimation in such mod-
els which have been investigated thoroughly, although a method has been suggested in
(Nielsen, Nielsen, Joensen, Madsen & Holst 1999).

Initially cubic and quadratic B-spline bases with equidistant knots is investigated. The
first knot is placed at 00:00. If e.g. the diurnal variation for one particular type of
day is to be modelled using a periodic cubic B-spline basis and six degrees of free-
dom the six internal knots will be placed at 00, 04, . . . , 20. For a cubic spline three
knots will have to be placed beyond the range of the data resulting in the knots
−12,−8,−4, 0, 4, . . . , 20, 24, 28, 32, 36. A standard cubic B-spline basis is then gen-
erated using these knots and the last three columns of the basis is deleted, but first
added to the first three columns. The resulting basis has six columns and is a flexible
basis for estimation of a periodic function. In the following we shall refer to such a
basis as a periodic cubic B-spline basis with six internal equidistant knots. Periodic
quadratic B-spline bases are generated similarly, but only two knots are needed beyond
the range of the data and only the last two columns of the basis is deleted, but first
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added to the first two columns.

The top row of plots in Figure 5.24 shows the maximum absolute difference between
each of the diurnal profiles estimated using periodic cubic B-spline bases, periodic
quadratic B-spline bases, and harmonic expansions and the diurnal profile estimated
using one free parameter for each combination of time and type of day. The middle
row shows the mean of these absolute differences and the bottom row shows the RMS
of the residuals. Note that the three plots in the bottom row all corresponds to the
total RMS. The horizontal line in the bottom row indicates the RMS when one free
parameter is used for each combination of time and type of day. The models with
fewest degrees of freedom corresponds to a third order harmonic expansion and seven
internal equidistant knots. Note that the full range of the RMS-values is not shown on
the plot.
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Figure 5.24: Summary statistics of fits using periodic cubic B-spline bases (solid),
periodic quadratic B-spline bases (dotted), and harmonic expansions (dashed) plotted
against the total degrees of freedom of the model.
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Especially the plot of RMS shows a change in slope at 43 degrees of freedom, corre-
sponding to 11 internal and equidistant knots and a fifth order harmonic expansion.
For the model in which a periodic cubic B-spline basis is applied the RMS is 81.83
GJ/h, compared with 81.65 GJ/h when one free parameter is used for each combina-
tion of time and type of day. Generally the three types of parametrizations seems to
be quite similar except for the case where the total degrees of freedom is low. In this
case the periodic cubic B-spline basis seems preferable. When seven internal knots are
used, corresponding to 31 degrees of freedom, this type of basis results in a RMS value
of 82.37 GJ/h. The harmonic expansion with the same number of degrees of freedom
results in an RMS value of 82.69 GJ/h.

It is noted that the curves in Figure 5.24 corresponding to spline bases are rather
non-smooth and the RMS of the residuals is not decreasing when the total degrees of
freedom is increasing. This is because the smaller models (in the sense of the total
degrees of freedom) is not sub-models of the larger models.

In Figure 5.25 the estimated diurnal profiles using periodic cubic B-spline bases and
harmonic expansions are shown. The location of the internal knots are indicated by rugs
on the time-axis. In the top row the models using 43 degrees of freedom is addressed.
For both the periodic cubic B-spline basis with 11 equidistant knots and the fifth order
harmonic expansion the results are very close to the results obtained when using one
free parameter for each combination of time and type of day. The bottom row of the
figure shows the result when four of the internal knots are deleted so that the density
of knots are largest near the morning peak load period. This model has 31 degrees
of freedom, which is also the number of parameters in a model in which a third order
harmonic expansion is used. For this reason the results obtained using a third order
harmonic expansion is also displayed in the bottom row. In this case the cubic spline
basis models the morning peak better than does the harmonic expansion; especially
on working days. Both methods show some departure from the large model around
midnight.
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Figure 5.25: Estimated diurnal profiles (GJ/h) using different parametrizations. The
solid lines indicates the estimates obtained when one free parameter is used for each
combination of time and type of day. The dotted lines are results obtained using a
periodic cubic B-spline basis and the dashed lines are results obtained using a harmonic
expansion. The top row of plots corresponds to 43 degrees of freedom (11 internal knots
/ 5’th order harmonic expansion). The bottom row of plots corresponds to 31 degrees
of freedom (7 internal knots / 3’rd order harmonic expansion). The internal knots are
indicated by rugs on the time-axis. The horizontal lines shows the overall mean of the
estimates.



Chapter 6

Predicting the heat consumption

In this chapter adaptive estimation as described in Section 3.4 will be applied to the en-
tire data set. The investigation will be based on the same type of models as considered
in Section 5.9, i.e.

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1 + et, (6.1)

where the filters (5.11) and (5.12) are used, i.e.

H1(q) =
0.066

1− 0.934q−1
, (6.2)

and

H2(q) =
−0.350 + 0.612q−1 − 0.226q−2

1− 1.703q−1 + 0.739q−2
. (6.3)

Qt denotes the heat consumption at time t, Wt is the wind speed, Ta,t is the air
temperature, Rt is the solar radiation on a square pillar as described in Chapter 2,
and a· are the parameters. Above the structure of the diurnal variation µ(h24

t ,Υt) is
not specified. Here some of the same parametrizations as described in Section 5.9 will
be investigated. Specificly the fifth order harmonic expansion, the periodic cubic B-
spline basis with 11 equidistant internal knots, and the B-spline basis with seven knots
derived from the former, cf. Figure 5.25. In Section 5.9 the estimated diurnal profiles for
the day types “working”, “half-holy”, and “holy” are shown for the parametrizations
mentioned above.

73
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The adaptive estimates are calculated using an S-PLUS library written by Torben Skov
Nielsen, Dept. of Math. Mod., Technical University of Denmark. In case of missing
values neither of the updates (3.20) nor (3.21) on page 26 are performed.

6.1 Adaptive RLS estimates

In Appendix B starting on page 117 Figures B.1, B.2, and B.3 shows the cumulative
squared prediction errors for the horizons 24, 48, and 72 hours. The predictions are
calculated based on adaptive recursive least squares estimates in (6.1) with the three
type of days mentioned above and under the assumption of known future climate. In
case of missing values (only occurring in Qt) the prediction errors are treated as zero
in the plots.

It is seen that the three parametrizations of the diurnal variation result in quite similar
results, but the choice of the forgetting factor is very important. Especially, for the
24 hour predictions and the low forgetting factor (0.99) the B-spline basis with seven
internal knots are slightly inferior for data in 1996. However, the curves are practically
parallel and therefore the predictions are equally good when considering this period
separately. Hence, it is only during a short period of time in the end of January, 1996
that the B-spline basis with seven internal knots performs poorer than the two other
parametrizations.

In conclusion there do not seem to be any benefit in using the special designed B-
spline basis with only seven internal knots. It is therefore preferred to use the periodic
cubic B-spline basis with 11 equidistant internal knots since this will not imply any
restrictions on, e.g. the location of the morning peak load period estimated by the
model. Alternatively, the fifth order harmonic expansion could be used. In Figure 6.1
the equivalent kernel corresponding to 12:00 of the two bases is shown assuming that
data from one day is available. The equivalent kernel is the weights the observations
receive in construction of the particular fitted value, i.e. ŷ12 =

∑23
h=0 w12,hyh, where yh

is observations of the dependent variable, ŷ12 is the fitted value at 12:00, and w12,h are
the weights. Although, the B-spline basis is preferable in that it dies out somewhat
faster than the harmonic expansion, the two approaches have quite similar equivalent
kernels.

Above each day of the year has been classified into one of the groups “working”,
“half-holy”, and “holy”. Here the first group contains approximately five times as
many observations as the two other groups. Since also the estimated diurnal profiles
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Figure 6.1: Equivalent kernel corresponding to 12:00 for a periodic cubic B-spline basis
with 11 internal equidistant knots (×) and a fifth order harmonic expansion (◦).

corresponding to days in the groups “half-holy” and “holy” are similar, cf. Figure 5.25
on page 72, it may be advantageous to neglect the difference between these types of
days for on-line predictions. These aspects are investigated using Figures B.4, B.5,
and B.6 which shows the cumulative squared prediction error for 24, 48, and 72 hour
prediction horizons and for different values of the forgetting factor.

Again, the forgetting factor seems to be more important than details about the model
structure. However, when the low forgetting factor of 0.99 is used the grouping of
days into all three groups seems advantageous for horizons 48 and 72 hours. When the
overall better forgetting factor of 0.995 is used the methods perform almost equally
well for horizons 48 and 72 hour. For the 24 hour predictions it seems advantageous to
neglect the difference between half-holy and holy days. However, again the difference
in performance seems to be generated almost entirely in the end of January, 1996.

Consequently, we shall entirely neglect the difference between half-holy and holy days.
However, if there should be more subjective reasons to use all three day groups the
loss is quite small.

For the model consisting of (6.1), (6.2), and (6.3), where the diurnal variation is mod-
elled by a periodic B-spline basis with 11 internal equidistant knots forgetting factors
ranging from 0.99 to 0.999 in steps of 0.001 are investigated for prediction horizons
1, 2, 4, 6, . . . , 70, 72 hours. Figure 6.2 shows the root mean square (RMS) of the pre-
diction errors from August 15, 1995 and onwards. The optimal forgetting factor (in
the sense of the RMS values mentioned) spans the interval 0.99 to 0.995, but for most
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horizons the optimum is not very well defined. For the one and two hour predictions
the optimum is at the lower bound of the interval investigated. However, since this
bound corresponds to 1/(1− 0.99) = 100 effective observations only, and since it may
occasionally result in very large prediction errors, smaller forgetting factors will not be
investigated.
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Figure 6.2: Root mean square (RMS) of prediction errors from August 15, 1995 and
onwards versus forgetting factor. For selected horizons the actual horizon is indicated
at the leftmost endpoint of the curve corresponding to that particular horizon. The
minimum RMS for each horizon is indicated by a dot.

From the plots in Appendix B it is however clear that a forgetting factor constant
over time is a sub-optimal solution. The small forgetting factors are good in periods
in which the adaptive estimates should change quickly (spring and autumn), whereas
larger forgetting factors are advantageous in more stable periods. These aspects are
further considered in Section 6.3, starting on page 80.
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For the “optimal” forgetting factor the root mean square of the prediction errors oc-
curring in the same period as considered in Chapter 5 is 80.82, 87.79, and 88.49 GJ/h
for the 24, 48, and 72 hour predictions, respectively.

6.2 Prediction errors from regression models

In Section 6.1 the correlation of the prediction errors from the adaptive estimates in the
regression model is not used for generations of the actual predictions. Figure 6.3 shows
the prediction error, the SACF, SPACF, and the SIACF for the 24 hour prediction.
For 48h and 72h the picture is similar. From the plots it is seen that the prediction
error seems to be well described by an AR(1) model, or a noise model as in (5.20) on

page 62. However, here we will use an AR(1) model. Let rt+k = Q̃t+k|t be the k-step
prediction error of the prediction of Qt+k generated based on data available at time
t. When predicting rt+k only rt, rt−1, . . . are available. Hence if φ denotes the pole in
the AR(1) model the prediction of rt+k will be r̂t+k|t = E[rt+k|{rt, rt−1, . . .}] = φkrt.
If φ ≈ 0.9, which seems plausible from the plots considered above, then φ24 ≈ 0.08,
indicating that it is difficult to use the autocorrelation to improve the predictions.
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Figure 6.3: 24 hour prediction error and sample correlation functions of the prediction
errors. Errors up to August 15, 1995 have not been used in the calculations.

To maximize the predictive ability of the procedure adaptive estimates turned for the
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particular prediction horizon will be applied, i.e. for k-step predictions the model

rt+k = φkrt + et, (6.4)

will be used. Here et is the new prediction error and φk = φk, the difference being that
the estimate is tuned to the specific horizon.

The regression model used is the same as considered in Figure 6.2 and the optimal for-
getting factors indicated in this plot is used for adaptive estimation in the regression
model. The predictions from the regression model, again assuming the future climate
to be known, are then modified by adaptive estimation in (6.4). For (6.4) the forget-
ting factors 0.99, 0.991, . . . , 0.999, 0.9991, 0.9992, . . . , 0.9999, and 0.99991, 0.99992, . . . ,
0.99999 are investigated. Figure 6.4 shows the root mean square versus the forgetting
factor. In general for the shorter prediction horizons the optimum is not very well
defined and for the larger horizons forgetting factors outside the interval [0.998, 0.9998]
should be avoided. Furthermore, it seems reasonable to use a forgetting factor of 0.999
for all prediction horizons.

For the “optimal” forgetting factors corresponding to Figures 6.2 and 6.4 the root mean
square of the prediction errors occurring in the same period as considered in Chapter 5
is 78.85, 86.55, and 87.48 GJ/h for the 24, 48, and 72 hour predictions, respectively.
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Figure 6.4: Root mean square (RMS) of prediction errors from August 15, 1995 and
onwards versus forgetting factor used for adaptive estimation in (6.4), when the optimal
forgetting factor from Figure 6.2 is used for adaptive estimation in the regression model.
For selected horizons the actual horizon is indicated at the leftmost endpoint of the
curve corresponding to that particular horizon. The minimum RMS for each horizon
is indicated by a dot. The rugs on the x-axis indicate the forgetting factors used.
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6.3 On-line selection of prediction method

As indicated by the previous sections the model described by (6.1), (6.2), (6.3), with
a separate diurnal variation for working and non-working days and modelled by a pe-
riodic B-spline basis with 11 equidistant internal knots is appropriate for prediction
when estimated adaptively. Furthermore, especially for the shorter horizons, it is im-
portant to correct the predictions from the regression model by an adaptively estimated
autoregressive model as described in Section 6.2.

The quality of the predictions varies with the forgetting factor used for estimation in
the regression model and the autoregressive model. Also, it is plausible that it will
be beneficial to use different forgetting factors at different points in time, e.g. in the
start of autumn when people start turning on the heating systems a relatively small
forgetting factor is likely to be beneficial.

In this section ways of varying the forgetting factor is considered. Traditional ap-
proaches includes methods such as variable forgetting (Fortescue, Kershenbaum &
Ydstie 1981) and selective forgetting (Parkum 1992). Selective forgetting is mainly
concerned with the properties of the estimates and is complicated to implement. For
these reasons it will not be considered further at this place. Variable forgetting modi-
fies the forgetting factor used at each time step based on the last available prediction
error. In this section methods related to variable forgetting will be considered. The
methods are more computationally demanding, but allows for more general methods
of measuring the current quality of the prediction method. Furthermore, the meth-
ods allows for the combination of predictions obtained by use of different models, or
prediction methods in general.

Here the individual prediction methods are defined by the regression model men-
tioned in the beginning of this section, estimated adaptively with forgetting factors
0.990, 0.991, . . . , 0.999. The predictions based on each of these forgetting factors are
then corrected using an autoregressive model of order one estimated adaptively with a
forgetting factor of 0.999, cf. Section 6.2. However, the methods suggested applies to
arbitrary prediction methods.

6.3.1 Definition of methods

Plots like e.g. Figure B.1 displays the performance over time for different methods of
prediction. As described by Skouras & Dawid (1998) two prediction methods are equiv-
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alent if a plot of the cumulative squared prediction error against time shows parallel
curves. This also applies locally in time and from Figure B.1 it is e.g. evident that
before December 15, 1995 the low forgetting factors of 0.99 and 0.995 are superior to
0.999 and from this date until ultimo January, 1995 the high forgetting factor is supe-
rior. Other measures of performance, e.g. plots of the cumulative absolute prediction
errors, may also be applied.

However, for on-line applications the evaluation of prediction performance can only be
based on past prediction errors for the simple (constant forgetting factor) prediction

methods. Let Q̃
(i)
t|t−k = Qt− Q̂(i)

t|t−k denote the error observed at time t in predicting the
heat consumption Qt, k step before when using the prediction method indexed by i.
The adaptive measure of performance used in this report is then found by exponential
smoothing of the squared prediction errors, i.e.

MS
(i,k)
t = (1/nms)(Q̃

(i)
t|t−k)

2 + (1− 1/nms)MS
(i,k)
t−1 , (6.5)

where the nms is the effective number of hours behind the result. The recursions are
initiated by setting MS

(i,k)
1 equal to the square of the first available prediction error.

Based on the adaptive measure of performance just defined two methods of generating
the actual k-step predictions are suggested. The most simple approach is to use the
predictor Q̂

(i)
t+k|t for which MS

(i,k)
t attains a minimum over i. This method will be de-

noted on-line selection of prediction method. However, several prediction methods may
have values of MS

(i,k)
t near the minimum. Therefore a method denoted on-line weight-

ing of predictors is suggested. With this method the actual prediction is generated as

Q̂t+k|t =

∑
i Q̂

(i)
t+k|t/MS

(i,k)
t

∑
i 1/MS

(i,k)
t

, (6.6)

i.e. as an weighted average of the individual predictions, with weights corresponding to
the inverse of the most recent measure of performance. It is noted that by appropriate
definition of weights both approaches can be described by an equation similar to (6.6).
This also points towards a larger set of weighting schemes all based on an adaptive
measure of performance.

6.3.2 Comparison of methods

Figures B.7, B.8, and B.9, starting on page 124, shows the cumulative squared 24, 48,
and 72 hour prediction errors obtained using on-line selection of prediction method and
nms in (6.5) corresponding to 3, 5, . . . , 11 days. In the figures the results obtained using
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the constant forgetting factors are also displayed. For on-line weighting of predictors
the results for 24, 48, and 72 hour predictions are depicted in Figures B.10, B.11, and
B.12, respectively.

For 24 hour predictions both methods are superior to the predictions obtained using
constant forgetting factors and both quite insensible to the choice of nms. For the 48
hour predictions this is also true for the selection method, but the weighting method
seems inferior in that the cumulative squared prediction errors are not consistently
near the minimum over the predictions obtained using the constant forgetting factors.
However, the curve corresponding to the weighted predictors has actual lower slope
in the second half of the period than any of the other predictors and therefore it is
superior in this period, but inferior during a short period in the beginning of 1996.
Finally, for the 72 hour predictions the weighted predictors are mostly superior to the
predictors obtained using constant forgetting factors. This is not true in the second
half of the period for the selection method. For all prediction horizons it is evident that
the weighting method is less sensible to the choice of nms than the selection method.

Figures 6.5, 6.6, and 6.7 compare cumulative squared 24, 48, and 72 hour prediction
errors of both methods (nms = 11× 24h) together with the results obtained using the
constant forgetting factor for which the final value of the curves in Figures B.7, B.8,
and B.9 is lowest. Note that this comparison is biased towards selecting a constant for-
getting factor as the best method of prediction. This is because the constant forgetting
factor is selected based on the entire set of data.

It is seen that for the 24 and 48 hour predictions the selection method performs well
in the difficult short period of time in the beginning of 1996. For data in 1996 the
difference between the curves corresponding to selection and weighting decrease and
overall the weighting method is superior to both the selection and constant forgetting
factor methods for all prediction horizons. Since, it is rather insensible to the choice of
nms and considering the bias in the comparison just mentioned it seems advantageous
to use the weighting method for generating the predictions.
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Figure 6.5: Cumulative squared 24 hour prediction errors for on-line weighting of
prediction methods (solid), on-line selection of prediction method (dotted) and best
constant forgetting factor (0.996, dashed). Prediction errors occurring before August
15, 1995 are disregarded.
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Figure 6.6: Cumulative squared 48 hour prediction errors for on-line weighting of
prediction methods (solid), on-line selection of prediction method (dotted) and best
constant forgetting factor (0.996, dashed). Prediction errors occurring before August
15, 1995 are disregarded.
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Figure 6.7: Cumulative squared 72 hour prediction errors for on-line weighting of
prediction methods (solid), on-line selection of prediction method (dotted) and best
constant forgetting factor (0.996, dashed). Prediction errors occurring before August
15, 1995 are disregarded.
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6.4 Simplified use of climate data

In this section the effect on the prediction performance of each of (i) replacing the
transformed solar radiation, cf. Chapter 2, with the direct measurement of global radi-
ation, (ii) exclusion of solar radiation, (iii) exclusion of wind speed, and (iv) exclusion of
both solar radiation and wind speed are assessed. In all cases the models are estimated
adaptively using exponential forgetting with forgetting factors 0.99, 0.991, . . . , 0.999
and subsequently the weighting of prediction methods described in Section 6.3 are ap-
plied (nms = 11 × 24). Each of these four methods of prediction are compared with
the original method, i.e. the same weighting method as described above applied to the
model defined by (6.1), (6.2), (6.3) and with a separate diurnal variation for working
and non-working days and modelled by a periodic B-spline basis with 11 equidistant
internal knots. Furthermore, in all cases, before the weighting is applied the predictions
are corrected by an adaptively estimated autoregressive model using a forgetting fac-
tor of 0.999, as described in Section 6.2. In the analysis the future climate is assumed
known.

For 24, 48, and 72 hour predictions the cumulative squared prediction errors are de-
picted in Figures 6.8, 6.9, and 6.10, respectively. It is seen that there is a slight loss in
using the global radiation without transformation and for the 24 hour prediction hori-
zon it performs marginally better. This is probably due to the relatively low forgetting
factors used, whereby the annual variation of the orbit of the sun over the firmament
can be corrected for by adapting the estimates related to the diurnal variation and to
the global radiation.

Apparently the exclusion of the wind speed has a very significant effect on the prediction
performance. However, a large fraction of the difference on the terminal sum of squared
errors originates from a very short time interval in the end of January, 1996. An closer
investigation of the data shows that during January 27, 1996 the wind speed drops to
close to zero and remains so for a relatively long period. Furthermore, in a period up
to the date mentioned the wind speed were relatively high. The prediction errors are
large (up to 500 GJ/h) in the period January 28-30, 1996. These observations indicates
that the part describing the dependence on wind speed in the original model is a good
approximation in that it to some extend can handle the change in wind conditions
which occurred on the date mentioned above. Consequently, when the wind speed are
excluded from the model, the change in wind conditions has to be compensated for by
adaption of the overall level of heat consumption.

During January 25-26, 1996 prediction errors of the same magnitude as during January
28-30, 1996 are present. Apparently, during January 25-26 the heat consumption is
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higher than would be expected based on the observations of climate.

Overall excluding wind speed, solar radiation, or both will result in an increased slope
on the plots of the cumulative squared prediction errors. Indicating that there is an
advantage in using all climate variables, assuming that they can be predicted precisely
enough. Note that when excluding the solar radiation the overall slope gets larger
but in the end of January, 1996 the large prediction errors are absent. This is related
to large recordings of solar radiation on January 28, 1996, which apparently is not
reflected by the heat consumption.

In Table 6.1 the average slopes of the part of the curves in Figures 6.8, 6.9, and 6.10
starting on February 15, 1996 are listed. Except for the effect of curvature in the plots
of the cumulative squared errors the slopes equal the mean squared prediction error.
The slopes are found by fitting a strait line by use of least squares to the last part of
the curves just mentioned. The same information is included for a number of other
predictors; (a) all climate information excluded, (b) PRESS 24h predictor, (c) naive
predictor, i.e. the prediction obtained by just using the last observed value, and (d) an
other simple predictor obtained as the last observed value for a day of the same type.
The PRESS predictor is model (8.6) in (Madsen, Nielsen & Søgaard 1996) with solar
radiation excluded. Since here the supply temperature is irrelevant it is also excluded.
The forgetting factor (0.99851) mentioned on page 118 of the reference just mentioned
is used. Note that the naive predictor is only applicable because the prediction horizons
are 24h, 48h, and 72h.

The overall conclusion from table Table 6.1 is that the potential advantage from using
meteorological forecasts is very large in that the slopes calculated with and without
climate information differ approximately by a factor two. The so called simple predictor
is inferior in performance to the remaining predictors. This is due to the very long
actual prediction horizon used for this predictor, especially for Saturdays, but also in
the beginning of the week.
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Model 24h 48h 72h
Original 69.72 81.12 85.52

Global radiation 69.12 80.42 84.92

Solar radiation excl. 75.92 91.62 97.62

Wind speed excl. 75.32 86.22 89.42

Solar radiation and wind speed excl. 82.62 99.52 102.72

Climate information excl. 130.82 176.02 202.42

PRESS 129.02 – –
Naive predictor 128.92 171.32 199.02

Simple predictor 184.32 218.92 238.02

Table 6.1: Average slopes in (GJ2/h) of the part of the cumulative squared prediction
error curves starting on February 15, 1996 for 24, 48, and 72 hour predictions. Note that
for shorter horizons PRESS preforms much better than the naive predictor (Madsen
et al. 1996, p. 118).
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Figure 6.8: The effect of simplified use of climate data on the cumulative squared 24
hour prediction error, assuming known future climate. Prediction errors before August
15, 1995 are excluded.
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Figure 6.9: (The effect of simplified use of climate data on the cumulative squared 48
hour prediction error, assuming known future climate. Prediction errors before August
15, 1995 are excluded.
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Figure 6.10: The effect of simplified use of climate data on the cumulative squared 72
hour prediction error, assuming known future climate. Prediction errors before August
15, 1995 are excluded.
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6.5 Uncertainty on meteorological forecasts

For application of the prediction methods considered so far meteorological forecasts
of the climate variables must be available. These forecasts will be associated with
uncertainty. In (Nielsen & Amstrup 1998) these uncertainties are addressed. Here
the standard deviations of the prediction errors for land stations from DMI-HIRLAM-
D (D05) will be used. This particular meteorological model were chosen since the
standard deviation do not show fluctuation with the prediction horizon and since it
is superior to DMI-HIRLAM-G. However, the conclusions obtained in this section are
not sensitive to the particular choice of meteorological forecast method. Figure 6.11
shows the evolution of the standard deviation of the prediction error with the length
of the forecast horizon. Note that for prediction horizons below 12 hours the standard
deviations of the prediction errors are approximately constant. Therefore it should be
possible to improve the short term predictions of the climate variables by correcting
the meteorological forecasts using statistical methods and on-line measurements of
climate variables. A simple example of this is that for the climate data used in this
report predicting the value one hour ahead as the most recent recorded value results
in a standard deviation of 0.75oC and 0.49m/s for the temperature and wind speed,
respectively. These values are well below the minimum values for the meteorological
forecasts.
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Figure 6.11: Standard deviation of the prediction error for prediction horizons 0-48 hour
for the temperature 2m above ground level and the wind speed 10m above ground level.

When using meteorological forecasts it seems appropriate to use the best possible
description (model) of the relations between the physical quantities, i.e. the climate
variable and the heat consumption. Following this approach we would estimate the
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parameters of the model adaptively based on measurements of heat consumption and
climate variables as it is done in the previous sections and just use the meteorological
forecasts to generate the predictions of the heat consumption. In the following this
method will be called the simple method of including meteorological forecasts. One
obvious problem with this method is that if the mean of the difference between the
meteorological forecasts and the observations of climate is non-zero, constant or slowly
changing over time, then this systematic bias will be reflected in the predictions of the
heat consumption. However, this type of error can easily be corrected for by adaptive
correction of the predictions as described in Section 6.2. A more serious problem with
the simple method is that it will assign weight to the climate variables even if these
are predicted so poorly that they can be considered unknown.

Jonsson (1994) considered these aspects for linear regression and compared different
types of estimates with respect to the resulting prediction performance. He showed
that it is often best to use the uncertain predictions of the independent variables
(meteorological forecasts in this case) as data when estimating the parameters of the
model. In this way the influence of the meteorological forecasts are included taking
into account a combination of their uncertainty and their relative importance. Note
that in this case the estimates of the model parameters are biased. For this reason
care should be taken when interpreting components of the model. For instance the
estimates can not be used for investigating the dependence of heat consumption on the
air temperature.

Applying the concept in the present context implies that the adaptive estimates must be
calculated separately for each prediction horizon. If the method described in Section 6.3
is used ten adaptive estimates are generated for each prediction horizon, resulting in
720 adaptive estimates when predictions up to 72 hours are to be generated. In the
following this method will be called the advanced method of including meteorological
forecasts. Note that this method does not pose a computational problem since in
(Nielsen, Madsen & Nielsen 1999) approximately 1000 sets of adaptive estimations are
run in parallel, and this is able to run 300 times real time on a 450 MHz Pentium III
PC running Linux. Although the models in (Nielsen, Madsen & Nielsen 1999) contain
fewer parameters than the models considered here the sampling interval is only half an
hour opposed to one hour here.

Since, in the models used, the climate variables are filtered (see e.g. page 73) the
correlation of the prediction errors will be important. However, only the standard
deviation of the prediction errors for up to 48 hour horizons, cf. Figure 6.11, are known
to us. Therefore, simulations are performed for different values of the correlation.
Actually, the correlation has to be split in at least three types:
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1. Correlation between prediction errors of meteorological forecasts originating from
the same point in time and related to the same climate variable.

2. Correlation between prediction errors of meteorological forecasts sharing the same
prediction horizon and related to the same climate variable.

3. Correlation between prediction errors of meteorological forecasts sharing the same
prediction horizon and originating from the same point in time, but related to
different climate variables.

To simplify the simulations a model in which both wind speed and global radiation is
excluded is used. Therefore item 3 above can be disregarded.

Let T̃a,t|s; t > s denote the prediction error of the meteorological forecast issued at
time s of the air temperature at time t. A matrix of these prediction errors are then
simulated as described in Appendix C and has the following structure:




T̃a,1|0 T̃a,2|0 . . . T̃a,k|0
T̃a,2|1 T̃a,3|1 . . . T̃a,k+1|1
...

...
...

T̃a,t+1|t T̃a,t+2|t . . . T̃a,t+k|t
...

...
...

T̃a,N−k+1|N−k T̃a,N−k+2|N−k . . . T̃a,N |N−k




, (6.7)

where k is the prediction horizon considered (in hours) and the data used in this work
is indexed as 1, 2, . . . , N . Element (1, 1) corresponds to the first data value and element
(N − k,N) to the last data value. The prediction errors are simulated such that

• they are normally distributed with zero mean,

•
√
V ar[T̃a,t+k|t] follows the curve for the temperature 2m above ground level as

shown in Figure 6.11 on page 92,

• the correlation between neighbour prediction errors in a row of (6.7) is constant
ρr,

• the correlation between T̃a,t+j|t and T̃a,t+i|t depends on |i− j| only and follows the
auto correlation function of an AR(1) process with the pole in ρr, and

• each column in (6.7) is an AR(1) process with the pole in ρc.
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Let T̂a,t+k|t = Ta,t+k − T̃a,t+k|t denote the simulated k-step meteorological forecast.

According to the model T
(f)
a,t+k = H1(q)Ta,t+k must be used for predicting the heat

consumption at time t + k. However, using meteorological forecasts, the best we can
do is to use

T̂
(f)
a,t+k =

k−1∑

s=0

hsT̂a,t+k−s|t +

∞∑

s=k

hsTa,t+k−s, (6.8)

where hs; s ≥ 0 is the impulse response of H1(q). For simulations it is possible to
calculate these values as

T̂
(f)
a,t+k = T

(f)
a,t+k −

k−1∑

s=0

hsT̃a,t+k−s|t. (6.9)

Since appropriate values of ρr and ρc are unknown to us different values will be investi-
gated for both the simple and advanced method of including meteorological forecasts.
Furthermore, the results will be compared for both the case where the predictions are
adjusted by an autoregressive model as described in Section 6.2, and the case where
this adjustment is not performed. On all plots of cumulative squared prediction errors
a curve corresponding to known future air temperature will be included for reference.
Also for all these plots the range on the axis corresponding to the cumulative squared
prediction errors is fixed to the interval [0, 2 × 108] GJ2. The investigations are per-
formed for 24 hour predictions of the heat consumption only and the parameters of
the model is estimated adaptively using exponential smoothing with a forgetting factor
of 0.995, since for this particular data set this method performs almost as well as the
more advanced method of averaging predictors, cf. Section 6.3.

When ρr and ρc are both close to one then, except for a constant factor between
columns, all values in (6.7) will be of similar size. This will act as a bias compared
with the observed air temperature and the simple method will result in large prediction
errors due to this bias, but it will be possible to remove a large fraction of this bias
if the predictions are adjusted as mentioned above. Therefore, when the predictions
are adjusted the simple and advanced method will perform similarly. When ρr and ρc
gets smaller the effect of the adjustment will be smaller and the advanced method will
outperform the simple method. These aspects are illustrated for the case ρr = ρc in
Figure 6.12. From the figure it is seen that when the correlations are moderately high
(0.9) adjustment of the predictions has a fair impact on both the simple and advanced
method, but the simple method can not be “saved” by the adjustment. When the
correlations are very high (0.999) the simple method performs very poorly without
adjustment. With adjustment the methods perform similarly. The reasons for these
observations are outlined above. In all cases the advanced method outperforms the
simple method of including meteorological forecasts.
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Figure 6.12: Cumulative squared 24 hour prediction error when ρc = ρr for adjusted and
non-adjusted predictions for reference (solid), simple (dotted), and advanced (dashed)
methods. Prediction errors before August 15, 1995 are excluded.
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In Figures 6.13 and 6.14 the cumulative squared prediction errors for the four combi-
nations of ρr = 0, 0.95 and ρc = 0, 0.95 are shown for the simple and advanced method,
respectively. It is seen that the performance of the simple method is very sensitive to
the values of ρr and ρc, whereas the advanced method is not affected very much by the
values of the correlations. Overall, the advanced method of including meteorological
forecasts clearly outperforms the simple method.

Finally, for the advanced method Figure 6.15 shows the root mean square (RMS) of
the prediction errors on August 15, 1995 and onwards for simulations in which ρc and
ρr is varied over 0.05, 0.15, . . . , 0.95, i.e. 100 simulations in all. It seems that especially
when the correlations are high there is some variation from one simulation to the other.
In order to more clearly reveal the main features of the dependence of RMS on ρc and
ρr the surface is smoothed using local linear regression with a 30% nearest neighbour
bandwidth. It is seen that the value of RMS increase with approximately the same
amount for both types of correlation, but the increase in RMS with increasing ρc and
ρr seems to be larger than expected had the effects been additive.

From the results presented in this section it is concluded that the advanced method of
including meteorological forecasts, i.e. using the meteorological forecasts when adap-
tively estimating the parameters of the model, should be applied. The method is not
very sensitive to different correlation structures of the meteorological forecasts. As it
is expected from theoretical considerations (Jonsson 1994) the advanced method is at
least as good as the simple method of including meteorological forecasts, i.e. using the
observations when adaptively estimating the parameters of the model, and in many
cases the simple method is severely outperformed by the advanced method.
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Figure 6.13: Cumulative squared 24 hour prediction error for unadjusted predictions for
reference (solid), simple (dotted), and advanced (dashed) methods. Prediction errors
before August 15, 1995 are excluded.
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are excluded. The range of the RMS-values is 93.6 to 102.1 GJ/h.



Chapter 7

Suggestions for implementation

Based on the work described in this report this chapter presents some suggestions
for implementation of on-line prediction of the heat consumption. It will be assumed
that meteorological forecasts of air temperature, wind speed, and global radiation are
available on-line. Furthermore it is assumed that appropriate interpolation methods
are implemented so that in the context considered here meteorological forecasts can
be treated as arriving every hour with a one-hour resolution of the prediction horizon,
see (Nielsen, Madsen & Nielsen 1999). The maximal prediction horizon which may
be considered is determined by the maximal prediction horizon of the meteorological
forecasts. Although the meteorological forecast may be uncertain for horizons larger
than, say, three days the methods suggested in this report will still be able to adapt
to slow changes in the overall level and diurnal variation and to the uncertainty of
the meteorological forecasts. Hence, the methods will retain some predictive ability
also when the precision of the meteorological forecasts is low. Preprocessing of on-line
measurements of heat consumption, air temperature, wind speed and global radiation
might be necessary to correct for errors which might otherwise deteriorate the quality
of the predictions of heat consumption, cf. the plot of the uncorrected data on heat
consumption in Figure A.1 on page 114. It will also be assumed that such methods for
on-line correction of measurements are available.

The system considered in this report is the transmission system of Vestegnens Kraft-
varmeselskab I/S (VEKS), which supplies heat to local district heating networks. The
hourly measurements of heat consumption are the heat supplied to the local district
heating networks during the preceding hour. For many networks supplying heat di-
rectly to the end-consumers the measurements of heat consumption will be the heat
supplied from the district heating plant(s) to the network. If the supply temperature
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from the plant varies over time it may be necessary to model the storage of heat and the
heat loss in the network. In this case the model used here must be extended to allow
for this. This may simply be done as in PRESS (Madsen & Nielsen 1997, Bøhm 1994).
However, because of the adaptive estimation, if the supply temperature varies slowly,
the model needs not to be extended. For instance, the effective No. of observations
behind the estimates when a forgetting factor of 0.994 is used corresponds to one week.

Two types of implementations are suggested. In the so called advanced implementation
on-line weighting of predictors as defined in Section 6.3 is used and in the simple imple-
mentation the constant forgetting factor method is applied. For both implementations
the advanced method of including meteorological forecasts, as defined in Section 6.5, is
used. In the models used in this report the climate variables are filtered to model the
dynamics of the buildings. When using meteorological forecasts this cause some prob-
lems for on-line systems. This last aspect is considered in Section 7.1, the two types
of implementations are considered in Sections 7.2 and 7.3. Finally, in Section 7.4 it is
considered how the meteorological forecasts can be improved explicitly or implicitly by
use of on-line measurements of the local climate or just by use of the measurements of
the heat consumption.

7.1 On-line filtering using meteorological forecasts

Equation (6.8) on page 95 shows how meteorological forecasts of the air temperature
for horizons 1, . . . , k are used to generate a prediction of the filtered climate variable
at time t+ k given information available at time t. The same principle applies for the
other filtered climate variables in the model. To recapitulate, in the model a given
climate variable xt is filtered trough a transfer function H(q) and enters the model as

x
(f)
t = H(q)xt =

∑∞
s=0 hsxt−s for prediction of the heat consumption at time t+k given

information available at time t the meteorological forecasts x̂t+k−s|t; s = 0, 1, . . . , k− 1

is used to generate a prediction of x
(f)
t+k as in

x̂
(f)
t+k|t =

k−1∑

s=0

hsx̂t+k−s|t +
∞∑

s=k

hsxt+k−s. (7.1)

This equation contains an infinite sum and can not be implemented directly. However,
the largest pole of any of the filters used in the model selected in this report is 0.934.
Therefore it is feasible to truncate the infinite sum, store e.g. one week of climate
observations, and rerun the filter for every time step and prediction horizon. Depending
on the structure of the filter it might be possible to derive an analytical result to the
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infinite sum. The approach suggested here is not dependent on the structure of the
filter.

7.2 Advanced implementation

It is suggested to use a model as defined by (6.1), (6.2), and (6.3) on page 73. The
diurnal variation (including the level) µ(h24

t ,Υt) should be modelled using a periodic
cubic spline basis with 11 equidistant internal knots as described in Section 5.9, alter-
natively a harmonic expansion of order five could be used. A separate diurnal variation
should be estimated for working and non-working days.

For each prediction horizon the advanced method of including meteorological forecasts
as described in Section 6.5 should then be applied together with adaptive recursive
estimation and exponential forgetting using forgetting factors 0.99, 0.991, . . . , 0.999.
With a maximal prediction horizon of 72 hours this amounts to 720 sets of adaptive
estimates. Each of the corresponding predictions should then be corrected using a
k-step formulation of an AR(1) model estimated adaptively using a forgetting factor
of 0.999, cf. Section 6.2. Finally, for each prediction horizon the method called on-line
weighting of predictors in Section 6.3 should be used to generate the actual predictions.
For the weighting of predictors the sensitivity to nms in (6.5) on page 81 seems to be
low. In this report a value corresponding to 11 days (nms = 264) is found to be a good
choice.

7.3 Simple implementation

To simplify the implementation the on-line weighting of predictors as suggested in
the previous section can be left out of the implementation. Furthermore, the diurnal
variation could be modelled using harmonic expansions instead of the periodic cubic
B-spline basis.

With this approach the forgetting factor used for each prediction horizon must be
selected. From Figure 6.2 on page 76 it can be deduced that the same forgetting factor
can not be used for all horizons. However, in the figure just mentioned the predictions
have not been adjusted using an AR(1) model and hence it cannot be used to select
appropriate values of the forgetting factors. Figure 7.1 shows the result when the
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predictions are adjusted as outlined in the previous section. From this plot it is seen
that a forgetting factor of 0.995 or 0.996 is appropriate. However, the uncertainty
of the meteorological forecasts might, to some extent, affect the choice of forgetting
factor.

Forgetting factor
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Figure 7.1: Root mean square (RMS) of prediction errors from August 15, 1995 and
onwards versus forgetting factor when the predictions are adjusted using an AR(1)
model. For selected horizons the actual horizon is indicated at the leftmost endpoint
of the curve corresponding to that particular horizon. The minimum RMS for each
horizon is indicated by a dot.
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7.4 Correction of meteorological forecasts

As noted in Section 6.5 it might be appropriate to adjust the meteorological forecasts
for the short prediction horizons. There is at least two ways to do this (i) explicitly by
building prediction models / methods based on observations of the climate variables
and recordings of meteorological forecasts, and (ii) implicitly by altering the structure
of the model(s) used for prediction of the heat consumption. The explicit method will
not be considered further at this place since it requires information not available to us.
Furthermore, it will be quite time consuming.

Basicly, the implicit method can be thought of as including the structure of the models
used in the explicit method into the model of the heat consumption (6.1). However,

here a far more simple approach will be suggested. Let x̂
(0,k−1)
t+k|t =

∑k−1
s=0 hsx̂t+k−s|t

and x
(k,∞)
t+k =

∑∞
s=k hsxt+k−s whereby x̂

(f)
t+k|t in (7.1) can be written x̂

(0,k−1)
t+k|t + x

(k,∞)
t+k .

In model (6.1) it is then suggested to replace each term containing a filtered climate

variable with two terms, one corresponding to x̂
(0,k−1)
t+k|t and one corresponding to x

(k,∞)
t+k .

For instance

a111Ŵ
(f)
t+k|t = a111(

k−1∑

s=0

hsŴt+k−s|t +
∞∑

s=k

hsWt+k−s)

is replaced by
a111,0Ŵ

(0,k−1)
t+k|t + a111,kW

(k,∞)
t+k .

For terms in the original model containing products of filtered climate variables the
model can still be formulated so that it is linear in the parameters. For short horizons
k where the meteorological forecasts of e.g. the wind speed should be adjusted by
observations of the wind speed, the implicit method will be able to correct for this
by placing more weight on W

(k,∞)
t+k than on Ŵ

(0,k−1)
t+k|t . By the use of this method the

number of parameters in the model will be increased by nine.

The method just outlined can easily be implemented. However, it must be noted that
the performance of it has not been investigated.
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Chapter 8

Conclusion and discussion

In this report methods for on-line prediction of the heat load hour by hour in a district
heating system are considered for prediction horizons up to 72 hours. It is assumed
that meteorological forecasts are available on-line.1 Theoretical relations known from
the theory of heat transfer have been used to select an initial model structure and data
on heat consumption and climate (temperature, wind speed, and global radiation) is
applied in combination with statistical methods to from an actual mathematical model
of the heat consumption. Finally, based on this model adaptive methods for prediction
are investigated and approaches to implementation are described.

Actual meteorological forecasts have not been available for the work described in this
report. For this reason it is not possible exactly to quantify the expected size of the
prediction errors of an on-line application based on this work. Therefore we shall only
consider the quality when the climate is assumed to be known and hence indicate
the potential for good meteorological forecasts. This is indicated by the plots of the
cumulative squared prediction errors as shown in Figures 6.5, 6.6, and 6.7, starting
on page 83. Using the weighting of predictors as suggested for implementation and
the global radiation as a measure of the solar radiation, the mean absolute relative
prediction errors is listed by month in Table 8.1. Also results obtained for the naive
predictor and the predictor obtained by excluding climate information, cf. Section 6.4
and Table 6.1 on page 88, is included. Not surprisingly, the method developed is more
superior during during cold periods than during warmer. Data for July 1995 is not
included since the adaptive estimation used do not settle until about August 15, 1995.

1Such a service has recently been introduced by the Danish Meteorological Institute under the
term “SAFE-Energy” (Petersen & Hilden 1999), where the forecasts are transmitted via the Internet.
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1995 1996
Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

24h predictions
Dev. meth. 6.5 7.6 4.4 3.5 3.3 4.5 3.9 3.1 6.2 7.2 14.3
Naive 5.2 9.5 9.4 11.4 6.8 6.4 7.9 5.9 11.2 14.2 14.9
No climate 6.9 12.0 9.6 11.7 6.4 6.5 8.3 5.7 13.2 14.1 16.7
48h predictions
Dev. meth. 8.6 9.4 5.2 3.8 3.7 5.5 4.2 3.2 7.2 8.6 18.8
Naive 7.5 12.7 14.1 16.0 8.0 9.0 10.8 6.6 17.5 20.1 21.2
No climate 8.1 14.7 14.8 16.0 7.4 9.6 11.0 6.0 21.5 19.3 23.4
72h predictions
Dev. meth. 11.2 10.8 6.2 3.8 3.7 5.5 4.4 3.4 7.5 8.8 21.6
Naive 9.2 16.1 17.0 17.0 8.8 10.8 13.1 7.1 21.5 23.3 25.8
No climate 8.9 16.8 17.0 17.1 8.7 11.7 12.9 6.6 26.1 21.3 28.4

Table 8.1: Mean relative prediction error in percent for the method developed assuming
the future climate to be known, for the naive predictor, and when excluding climate
information.

There are some differences between months. This is further revealed by Figure 8.1
in which the predictive ability of the method developed is summarized by week and
by prediction horizon. It is clear that relative prediction errors tend to increase with
decreasing heat consumption, whereas the actual prediction errors are large during
the winter months. In June 1995 large errors occur, this is due to the drop in heat
consumption during the first part of the month. This drop can apparently not be
explained by the climate.

The system considered is Vestegnens Kraftvarmeselskab I/S (VEKS) and the variable
predicted is the heat supplied from this network. Therefore, loss and storage of heat
in the network is not an issue. However, often the variable to be predicted will be the
heat supplied from the plant(s) to the district heating system. This variable will be
influenced by the supply temperature and the predictions of it should be conditional
on the future supply temperature. In such a situation the model used in this report
must be extended with a term containing the supply temperature; which can be done
as in (Madsen & Nielsen 1997).

Theoretical results such as those presented by Jonsson (1994) indicate that, since me-
teorological forecasts will contain some degree of uncertainty, the actual meteorological
forecasts and not the observations of climate should be used when adaptively fitting
the model used for prediction. Although the theoretical results are based on a more



109

M
A

E
 o

f R
el

at
iv

e 
P

re
d.

 E
rr

. (
%

)
0

5
10

15
20

R
M

S
 o

f P
re

d.
 E

rr
. (

G
J/

h)
)

0
50

10
0

15
0

20
0

24h
48h
72h

H
ea

t C
on

su
m

pt
io

n 
(G

J/
h)

0
50

0
10

00
15

00
20

00
25

00

01Sep1995 01Oct1995 01Nov1995 01Dec1995 01Jan1996 01Feb1996 01Mar1996 01Apr1996 01May1996 01Jun1996 01Jul1996

Figure 8.1: Mean relative prediction error by week (top), root mean squared prediction
error by week (middle), and heat consumption (bottom). Values for dates before
August 15, 1995 are excluded.
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simple setup than used in this report it is plausible that the results also apply here.
Simulations have been used to verify that using the actual meteorological forecasts is
advantageous compared to using the observations. Depending on the characteristics of
the meteorological forecasts, which are unknown to us, the use of observations may be
severely inferior to the use of the actual meteorological forecasts.

The prediction method contains some filters of which the parameters are not estimated
adaptively. These filters are related to the dynamic response of buildings on climate
variables. To be able to estimate the parameters of the filters adaptively by use of
recursive least squares the model need to be reformulated and written in linear form.
Actually, this is not entirely possible due to the product between e.g. filtered wind speed
and filtered air temperature. Furthermore, the number of parameters will increase by
a factor three and therefore the approach seems inappropriate. Fortunately, the filters
are related to the construction of the buildings and therefore they are expected to be
applicable to other geographical locations also. The main aspects of the dynamics found
in this study are similar to the dynamics found in a study on electricity consumption
(Nielsen & Madsen 1997). This further verifies that the filters are appropriate to
district heating systems supplying heat to typical Danish houses. For other systems
and countries it might be appropriate to change the filters. Based on data, this can be
done as described in Chapter 5. Note that for the model structure with the explanatory
variables available, i.e. air temperature, wind speed, and solar radiation, an appropriate
value of the forgetting factor is approximately 0.995, corresponding to 200 hours of
effective observations. This relative low forgetting factor is probably a consequence of
the Danish coastal climate. Therefore the prediction method should only be applied in
e.g. Central Europe after some investigations and possibly modifications. Furthermore,
the prediction errors of the regression part of the model, as shown on e.g. Figure 6.3
(page 77), exhibit slow and irregular variations. This indicates that other explanatory
variables than the ones used here might be appropriate. This could be other climate
variables such as precipitation or it could be variables related to the operation of the
district heating network. The last explanation implies that events occur where the
heat consumption is not equal to the heat requested by the consumers. According
to VEKS this might actually happen in case of pressure drops. One effect which is
not considered in the previous part of the report is the heat loss from the DH-pipes
in the networks connected to the VEKS transmission system. This is investigated in
Appendix D. Overall it seems to be slightly advantageous to take this aspect into
account, except for warm periods.

The method of prediction developed in this report may be applicable to other systems
which supply energy for heating. It is quite plausible that the principles can be used as
a basis for forming a method for prediction of natural gas consumption. If the pressure
in the system varies this requires that a term taking this into account is introduced.
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Furthermore, it is possible that the diurnal variation has to be modelled using more
parameters than used here, because the peak around 18:00 might be more pronounced
for natural gas consumption than for district heating.

To model the correlation of the noise an autoregressive model of order one (AR(1)) is
used here. Although an adaptively estimated AR(1) model is expected to account for
most of the correlation, the stochastic properties of the prediction errors of the actual
meteorological forecasts might result in other models being appropriate. An analysis
based on actual meteorological forecasts is required to clarify these aspects.

In the report it is demonstrated that non- and semi-parametric methods are valuable
tools for investigating possible non-linearities. In the present case this is the effect
of wind speed on the convection heat coefficient corresponding to the outside of the
walls. It is concluded, however, that a linear dependence is appropriate for prediction
purposes since improvement in the in-sample prediction performance is marginal when
a general non-linearity is allowed for. However, it has not been investigated if the
data contains support for the hypothesis of a non-linear dependence, i.e. the statistical
significance of the non-linearity is not addressed.

Modelling a system by use of theoretical knowledge about the system to be modelled
together with measurements performed on the system is sometimes called gray box
modelling. The extremes of this approach is white box modelling in which no data is
used and black box modelling in which no theoretical knowledge about the system is
used. For the work described in this report the gray box approach seems to have been
successful in that, as shown in Chapter 5, a model with good physical interpretation
and residuals resembling white noise is obtained. However, the residuals have non-
constant variance. This should be investigated further and possibly modelled. The
model just mentioned contains a description of the correlation of the noise. Assuming
the innovations to be Gaussian white noise, the noise and regression parameters of
the model can be estimated simultaneously using maximum likelihood (ML) estimates.
Disregarding the correlation of the noise the regression parameters can be estimated
using least squares estimates; which in this case is called output error (OE) estimates.
When these two sets of estimates are used to calculate the in-sample long term pre-
dictions, i.e. the predictions obtained when not conditioning on previous observations
of the heat consumption, the OE estimates are very superior to the ML estimates
in terms of root mean square (RMS) of the prediction errors (168.8 vs. 81.5 GJ/h).
For one-step predictions the RMS when ML estimates are used is 38.5 GJ/h and the
prediction errors based on the OE estimates can be corrected so that 46.7 GJ/h is
obtained, cf. Section 5.7.

For prediction purposes the model parameters are estimated adaptively using recursive
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least squares with exponential forgetting. As mentioned above this is only possible since
some filters in the model are fixed. It might be considered to use the recursive prediction
error method (Ljung 1987) for estimating all parameters of the model. However, since
the filters are related to the heating of the buildings, during the summer period most
of the information about the filters will be weighted down and must be learned again
during the first part of the heating season. Therefore it is doubtful that the application
of the recursive prediction error method will be successful. Furthermore, on page 54
it is argued that a singularity may exist for the non-linear least squares problem and
it is possible that this could be reached, especially, when all previous information is
weighted down during the summer period. Unless, very refined precautions are taken
this could result in a breakdown of an on-line system after a long period of time in
which it had been operating without problems.

Some new methods for on-line selection or weighting of predictions generated by differ-
ent methods are suggested and investigated. It is concluded that especially the on-line
weighting perform well and it is quite insensitive to the tuning parameter.
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Figure A.1: Raw measurements of heat consumption.
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Figure A.2: Raw measurements of climate variables.
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Figure A.3: Raw measurements of air temperature performed by The Royal Vet. and
Agric. Univ. (solid) and VEKS (dotted).
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Figure B.1: Cumulative squared prediction error of 24 hour predictions based on adap-
tive RLS estimates in (6.1) for the forgetting factors 0.99, 0.995, and 0.999. Prediction
errors occurring before August 15, 1995 are disregarded. Solid lines indicate the B-
spline with 11 internal knots, dotted lines the B-spline with 7 internal (non-equidistant)
knots, and dashed lines the fifth order harmonic expansion (hidden by the solid line).
The forgetting factors are indicated at the end of the lines.
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Figure B.2: Cumulative squared prediction error of 48 hour predictions based on adap-
tive RLS estimates in (6.1) for the forgetting factors 0.99, 0.995, and 0.999. Prediction
errors occurring before August 15, 1995 are disregarded. Solid lines indicate the B-
spline with 11 internal knots, dotted lines the B-spline with 7 internal (non-equidistant)
knots, and dashed lines the fifth order harmonic expansion (hidden by the solid line).
The forgetting factors are indicated at the end of the lines.
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Figure B.3: Cumulative squared prediction error of 72 hour predictions based on adap-
tive RLS estimates in (6.1) for the forgetting factors 0.99, 0.995, and 0.999. Prediction
errors occurring before August 15, 1995 are disregarded. Solid lines indicate the B-
spline with 11 internal knots, dotted lines the B-spline with 7 internal (non-equidistant)
knots, and dashed lines the fifth order harmonic expansion (hidden by the solid line).
The forgetting factors are indicated at the end of the lines.
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Figure B.4: Cumulative squared prediction error of 24 hour predictions based on adap-
tive RLS estimates in (6.1) for the forgetting factors 0.99, 0.995, and 0.999. Prediction
errors occurring before August 15, 1995 are disregarded. The diurnal variation is mod-
elled using a periodic cubic B-spline basis with 11 internal equidistant knots. Solid lines
indicate that the days are grouped into working, half-holy, and holy days. Dashed lines
indicate that the difference between half-holy and holy days are neglected entirely and
dotted lines indicate that half-holy and holy days differ in mean value only. The for-
getting factors are indicated at the end of the lines.



122 APPENDIX B. PLOTS RELATED TO PREDICTION
C

um
ul

at
ed

 S
qu

ar
ed

 P
re

di
ct

io
n 

E
rr

or
 (

G
J²

),
 4

8h
 p

re
di

ct
io

ns

0
2*

10
^7

4*
10

^7
6*

10
^7

8*
10

^7
10

^8

15Aug1995 15Oct1995 15Dec1995 15Feb1996 15Apr1996 15Jun1996

 0.99

 0.99

 0.99

 0.995 0.995 0.995

 0.999

Figure B.5: Cumulative squared prediction error of 48 hour predictions based on adap-
tive RLS estimates in (6.1) for the forgetting factors 0.99, 0.995, and 0.999. Prediction
errors occurring before August 15, 1995 are disregarded. The diurnal variation is mod-
elled using a periodic cubic B-spline basis with 11 internal equidistant knots. Solid lines
indicate that the days are grouped into working, half-holy, and holy days. Dashed lines
indicate that the difference between half-holy and holy days are neglected entirely and
dotted lines indicate that half-holy and holy days differ in mean value only. The for-
getting factors are indicated at the end of the lines.
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Figure B.6: Cumulative squared prediction error of 72 hour predictions based on adap-
tive RLS estimates in (6.1) for the forgetting factors 0.99, 0.995, and 0.999. Prediction
errors occurring before August 15, 1995 are disregarded. The diurnal variation is mod-
elled using a periodic cubic B-spline basis with 11 internal equidistant knots. Solid lines
indicate that the days are grouped into working, half-holy, and holy days. Dashed lines
indicate that the difference between half-holy and holy days are neglected entirely and
dotted lines indicate that half-holy and holy days differ in mean value only. The for-
getting factors are indicated at the end of the lines.
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Figure B.7: On-line selection of 24 hour prediction method using nms in (6.5) on page 81
corresponding to 3, 5, and 7 days (dashed) and 9 and 11 days (solid). The dotted lines
indicate the predictions obtained using constant forgetting factors. Prediction errors
occurring before August 15, 1995 are disregarded.
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Figure B.8: On-line selection of 48 hour prediction method using nms in (6.5) on page 81
corresponding to 3, 5, and 7 days (dashed) and 9 and 11 days (solid). The dotted lines
indicate the predictions obtained using constant forgetting factors. Prediction errors
occurring before August 15, 1995 are disregarded.
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Figure B.9: On-line selection of 72 hour prediction method using nms in (6.5) on page 81
corresponding to 3, 5, and 7 days (dashed) and 9 and 11 days (solid). The dotted lines
indicate the predictions obtained using constant forgetting factors. Prediction errors
occurring before August 15, 1995 are disregarded.



127
C

um
ul

at
ed

 S
qu

ar
ed

 P
re

di
ct

io
n 

E
rr

or
 (

G
J²

),
 2

4h
 p

re
di

ct
io

ns

0
10

^7
2*

10
^7

3*
10

^7
4*

10
^7

5*
10

^7

15Aug1995 15Oct1995 15Dec1995 15Feb1996 15Apr1996 15Jun1996

Figure B.10: On-line weighting of 24 hour predictors using nms in (6.5) on page 81
corresponding to 3, 5, and 7 days (dashed) and 9 and 11 days (solid). The dotted lines
indicate the predictions obtained using constant forgetting factors. Prediction errors
occurring before August 15, 1995 are disregarded.
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Figure B.11: On-line weighting of 48 hour predictors using nms in (6.5) on page 81
corresponding to 3, 5, and 7 days (dashed) and 9 and 11 days (solid). The dotted lines
indicate the predictions obtained using constant forgetting factors. Prediction errors
occurring before August 15, 1995 are disregarded.
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Figure B.12: On-line weighting of 72 hour predictors using nms in (6.5) on page 81
corresponding to 3, 5, and 7 days (dashed) and 9 and 11 days (solid). The dotted lines
indicate the predictions obtained using constant forgetting factors. Prediction errors
occurring before August 15, 1995 are disregarded.
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Appendix C

Simulation of prediction errors

In this appendix it is described how correlated prediction errors of meteorological fore-
casts of one climate variable are simulated. These simulated values are used to simulate
meteorological forecasts of the air temperature in Section 6.5.

Let x̃t|s; t > s denote the prediction error of the meteorological forecast issued at time
s of the climate variable x at time t. The simulated prediction errors are arranged in
a matrix with the following structure:




...
...

...
x̃t+1|t x̃t+2|t . . . x̃t+k|t
...

...
...


 , (C.1)

where k is the prediction horizon considered, e.g. in hours. The prediction errors are
simulated such that

• they are normally distributed with zero mean,

• V ar[x̃t+j|t] is a predefined value σ2
j for all j = 1, . . . , k, cf. Figure 6.11 on page 92,

• the correlation between neighbour prediction errors in a row of (C.1) is constant
ρr,

• the correlation between x̃t+j|t and x̃t+i|t depends on |i − j| only and follows the
auto correlation function of an AR(1) process with the pole in ρr, and

• each column in (C.1) is an AR(1) process with the pole in ρc.
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A matrix like (C.1) with the properties mentioned can be simulated by the following
steps:

1. Simulate k independent time series {ej,t}; j = 1, . . . , k, of appropriate length, as
Gaussian zero mean and unit variance AR(1) processes with a pole in ρc. The
unit variance is obtained if the innovation variance is 1− ρ2

c .

2. The first column of (C.1) is hereafter generated as

x̃t+1|t = σ1e1,t (C.2)

3. The remaining columns of (C.1) are then generated as

x̃t+j|t = σj

[
ρr
σj−1

x̃t+j−1|t + ej,t
√

1− ρ2
r

]
. (C.3)

In the following it will be shown that this procedure results in simulated prediction
errors with the properties stated above.

Normally distributed with zero mean: For x̃t+1|t this follows directly from (C.2)
since e1,t has the same properties. Since x̃t+2|t is a linear combination of Gaussian vari-
ables it is itself a Gaussian variable. This argument can be repeated for the remaining
values of j, establishing the normality of x̃t+j|t for all j. From (C.3) it follows that

E[x̃t+j|t] = σj

[
ρr
σj−1

E[x̃t+j−1|t] + E[ej,t]
√

1− ρ2
r

]
.

Since E[ej,t] = 0 for all j and since E[x̃t+1|t] = 0 it then follows that E[x̃t+j|t] = 0 for
all j.

Variance of x̃t+j|t = σ2
j : From (C.2) it follows that V [x̃t+1|t] = σ2

1 and from (C.3)
and V [ej,t] = 1 we get

V [x̃t+j|t] = σ2
j

[
ρ2
r

σ2
j−1

V [x̃t+j−1|t] + (1− ρ2
r)

]
.

Setting j = 2 it follows that V [x̃t+2|t] = σ2
2 and hereafter the argument can be repeated

to confirm that V [x̃t+j|t] = σ2
j ; j = 1, . . . , k.
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Correlation between x̃t+j|t and x̃t+i|t: The correlation of the prediction errors in
the same row of (C.1) can be written as

Cor[x̃t+j|t, x̃t+j+l|t] =
Cov[x̃t+j|t, x̃t+j+l|t]

σjσj+l
,

and since correlation and covariance is invariant to the order of the arguments it suffices
to consider j = 1, . . . , k − 1 and l = 1, . . . , k − j. Using (C.3) we obtain:

Cov[x̃t+j|t, x̃t+j+l|t] = Cov

[
x̃t+j|t,

σj+l
σj+l−1

ρrx̃t+j+l−1|t + σj+lej+l,t
√

1− ρ2
r

]
.

Since ej+l,t and x̃t+j|t is independent it follows that:

Cov[x̃t+j|t, x̃t+j+l|t] =
σj+l
σj+l−1

ρrCov[x̃t+j|t, x̃t+j+l−1|t],

and if these calculations are repeated l times:

Cov[x̃t+j|t, x̃t+j+l|t] =
σj+l
σj

ρlrCov[x̃t+j|t, x̃t+j|t] = σj+lσjρ
l
r.

Since correlation is invariant to the order of the arguments we have:

Cor[x̃t+j|t, x̃t+i|t] = ρ|i−j|r , (C.4)

which is equivalent to the autocorrelation function of an AR(1) process with a pole in
ρr and the correlation between neighbour hood prediction errors in a row of (C.1) is
constant ρr.

Auto correlation of the columns in (C.1): Since each column of (C.1) is gen-
erated as an scalar multiplied with an AR(1) process with the pole in ρc it follows
directly that each column has the same properties.
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Appendix D

Heat Loss From DH-pipes

At a presentation meeting held at the Department of Mathematical Modelling, Tech-
nical University of Denmark on March 16, 2000 the issue of heat loss from the pipes
in the local district heating systems connected to the transmission system was raised.
This aspect is considered in this appendix. The following persons participated in the
meeting:

Anders N. Andersen, Energi- og Miljødata
Bente Andersen, Farum Fjernvarme
Egon Erlandsen, Frederiksberg Varmeværk
Helge Faurby, Danmarks Meteorologiske Institut
Henrik R. Hansen, Vestegnens Kraftvarmeselskab
Jens Chr. Hansen, Sønderborg Kraftvarmeværk
Jens H. Hansen, Rambøll
Klaus W. Hansen, ELSAM
Dorthe R. Jensen, Centralkommunernes Transmissionsselskab
Gert Jensen, Frederiksberg Varmeværk
Oluf Jørgensen, Esbjerg Kommune
Peter Laursen, ABB Energi & Industri
Henrik Madsen, Institut for Matematisk Modellering, DTU
Steffen Moe, Sønderborg Fjernvarme
Henrik Aa. Nielsen, Institut for Matematisk Modellering, DTU
Torben S. Nielsen, Institut for Matematisk Modellering, DTU
Hans Ravn, Elkraft
Jan Strømvig, Odense Fjernvarme
Jesper Thiesen, Danmarks Meteorologiske Institut
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D.1 Introduction

In this report methods for predicting the heat consumption in district heating systems
by use of meteorological forecasts are considered. The underlying models are developed
using the gray box approach and the most important effects such as heat transfer
via walls, windows, and ventilation are considered together with effects related to
the overall behaviour of humans, see Chapter 4. The data used is the hourly heat
consumption delivered from the transmission system of Vestegnens Kraftvarmeselskab
I/S, Albertslund to the local distributors (DH-networks). The heat loss in the local
networks is not considered in the gray box approach. This appendix evaluates the
predictive ability obtained by considering this last mentioned effect. The evaluation is
performed assuming the future climate to be known. Since the DH-pipes are affected
only by a very low-pass filtered version of the climate, which will be quite easy to
forecast, the benefit, if any, will in practice be larger than indicated by the analysis
presented here.

Due to the low-pass filtering of the climate before reaching the DH-pipes and since the
prediction methods used in the report are adaptive, it is doubtful if the direct modelling
of the heat loss will improve the predictive ability. Since sufficiently low-pass filtered
versions of the air temperature and the global radiation are almost linear dependent
and since a sufficiently low-pass filtered version of the wind speed is near to constant
only the air temperature will be used in this investigation.

D.2 Prediction Method

The same model as in Chapter 6 will be used, but with a low-pass filtered version of
the air temperature Hsoil(q)Ta,t added.

Qt = µ(h24
t ,Υt) + a20H2(q)Rt

+ a111H1(q)Wt + a120H1(q)Ta,t + a121H1(q)WtH1(q)Ta,t

+ a100H1(q)Rt + a101H1(q)WtH1(q)Rt

+ a211,0Wt + a211,1Wt−1 + a220,0Ta,t + a220,1Ta,t−1

+ asoilHsoil(q)Ta,t + et, (D.1)

with the predefined filters

H1(q) =
0.066

1− 0.934q−1
, (D.2)



D.3. RESULTS 137

and

H2(q) =
−0.350 + 0.612q−1 − 0.226q−2

1− 1.703q−1 + 0.739q−2
. (D.3)

In D.1 Qt denotes the heat consumption at time t, Wt is the wind speed, Ta,t is the air
temperature, Rt is the solar radiation on a square pillar as described in Chapter 2, and
a· are the parameters. Above the structure of the diurnal variation µ(h24

t ,Υt) is not
specified. Here the periodic cubic B-spline basis with 11 equidistant internal knots will
be used and groups of days corresponding to working and non-working days will be
considered, cf. Chapter 6. The model will be estimated adaptively using a forgetting
factor of 0.995, which in Chapter 7 is found to be a good overall forgetting factor.

The low-pass filter

Hsoil(q) =
1− φsoil

1− φsoilq−1
(D.4)

corresponding to the heat loss from the DH-pipes is used and different values of the
pole φsoil is investigated below. It is decided to investigate values of the pole ranging
from 0.97 to 0.999, the low value is chosen based on the largest pole (0.934) in (D.2)
and (D.3). Ten values of φsoil are investigated. These are chosen equidistant from
1/log(0.97) to 1/log(0.999) and then transformed back to the original scale. Figure D.1
shows the filtered values of the air temperature.

D.3 Results

The results are presented both for the case where the model (D.1) is used directly
to generate the predictions and for the case where the predictions from the model are
adjusted using a multi step AR(1) model estimated adaptively using a forgetting factor
of 0.999, see Chapter 6. Results are presented for 72 hour predictions only.

Figures D.2 and D.3 show plots of the cumulative squared prediction errors for un-
adjusted and adjusted predictions, respectively. Prediction errors before August 15,
1995 are disregarded. The results corresponding to the original model, i.e. excluding
Hsoil(q), are indicated by thick lines.

For unadjusted predictions it is clearly advantageous to include the filter. For the
adjusted predictions the advantage is not obvious, but it is clear that using the filter
is not advantageous in the very first and last part of the period. This may be because
the consumers are not reacting on the climate at these time points and maybe models
not including climate information should perhaps be used in these periods.
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Figure D.1: Filtered values of the air temperature using ten different poles.

To summarize the information contained in the plots mentioned above the RMS of the
prediction errors are calculated for the four last periods defined by the dates on the
to horizontal axes of the plots. These periods corresponds to points in time in which
a fairly uniform behaviour of the prediction methods are apparent. The results are
displayed in Figure D.4.

Except for the last period (June, 1996) it is advantageous to include Hsoil(q)Ta,t in
the model. There seem to be no good explanation for the strange curvature for the
period December 16, 1995 to February 15, 1996 and this will not be considered further.
For the period October 1 to December 15, 1995 the unadjusted predictions perform
marginally better than the adjusted predictions for some values of φsoil. The opposed
(and expected) behaviour are observed for the period February 16 to May 31, 1996.

Overall, a pole in the interval 0.998 to 0.9985 seems to be advantageous together with
adjusted predictions. However, for the summer period it should be considered dropping
the climate information from the model. This may be done by use of the weighting of
predictors in Chapter 6.
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D.4 Conclusion

The benefit from including a low-pass filtered version of the air temperature as an addi-
tional explanatory variable in a model used for adaptive prediction of the consumption
in district heating systems is investigated. Overall this seems to be beneficial using
a first order filter with a pole in the interval from 0.998 to 0.9985. There is some
indication that climate information should be excluded from the model during summer
periods. One approach to this is to apply prediction methods both with and without
climate information and generate the final prediction by the method called on-line
weighting of predictors, cf. Chapter 6. In this appendix only one forgetting factor is
investigated. As argued in Chapter 6 a constant forgetting factor is not optimal. This
can also be handled by on-line weighting of predictors.
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Figure D.2: Cumulative squared prediction errors for unadjusted 72 hours predictions.
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Figure D.3: Cumulative squared prediction errors for adjusted 72 hours predictions.
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Figure D.4: RMS of 72h prediction errors for the periods indicated. Results corre-
sponding to adjusted predictions are indicated by solid lines and dotted lines indicate
results corresponding to unadjusted predictions. The horizontal lines indicate results
obtained with the original model.
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