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Summary

This report considers load scheduling for decentralized combined heat and power plants
where the revenue from selling power to the transmission company and the fuel cost
may be time-varying. These plants produce both heat and power with a fixed ratio
between these outputs. A heat storage facility is used to be able to deviate from this
restriction.

The load scheduling must be performed with only approximate knowledge about the
future. At present in Denmark this uncertainty is only associated with the heat de-
mand, but in the future revenues of produced energy and the fuel costs might also be
uncertain and dependent on time. It is suggested to use a combination of background
knowledge of the operator and computer tools to solve the scheduling problem. More
specificly it is suggested that the plant is equipped with (i) an automatic on-line sys-
tem for forecasting the heat demand, (ii) an interactive decision support tool by which
optimal schedules can be found given the forecasts or user-defined modifications of the
forecasts, and (iii) an automatic on-line system for monitoring when conditions have
changed so that rescheduling is appropriate. In this report the focus is on methods
applicable for items (ii) and (iii). For item (i), see (Madsen & Nielsen 1997, Nielsen &
Madsen 2000).

The approach taken in this report is explicitly to describe how the total revenue from
running the plant depends on the schedule for the heat and power producing units
of the plant. Hereafter optimization theory, in this case dynamic programming, is
applied to find the optimal schedule. To take the uncertainties into account it might
be considered to use stochastic dynamic programming. However, it is argued that
this is unpractical because the forecasting system will need to be integrated into the
optimization system, whereby a modular design of the software cannot be obtained.
Furthermore, we believe that all relevant forecasting methods are far too complicated
to allow for this integration; both uncertainties originating from the dependence of
heat load on climate and from meteorological forecasts need to be taken into account.
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vi SUMMARY

Instead we suggest that the decision support system allows the operator to investigate
the sensitivity of the optimal schedule to variations in the input. Furthermore, we
suggest that the system is equipped with the possibility to simulate realistic realizations
of the heat demand based on the actual forecast and previous forecast errors. By letting
the system find optimal schedules for each of these realizations the operator can gain
some insight into the importance of the uncertainties.

It is shown that with modern personal computers (e.g. 1 GHz Pentium III), operating
systems (e.g. RedHat Linux 6.0), and compilers (e.g. GNU C 2.91) the calculations can
be performed quickly enough to allow use to be applicable in practice. One optimal
schedule covering one week can easily be found within 5 to 10 seconds. When consid-
ering many possible realizations of the future heat demand some techniques are needed
to reduce the amount of CPU time required. The results indicate that it is possible to
find optimal schedules for 100 realizations of heat demand using less than 3 minutes of
CPU time. Furthermore, the methods allow for massive use of parallel processing.



Resumé

Nærværende rapport beskæftiger sig med driftplanlægning for decentrale kraftvarme-
værker, hvor brændselsudgiften og indtægten ved salg af elektricitet til transmissions-
selskabet kan være tidsafhængig. For s̊adanne værker er forholdet mellem el- og var-
meproduktion konstant, og et varmelager anvendes for at kunne afvige fra denne be-
grænsning over kortere perioder.

Planlægningen af driften må foretages ud fra delvis viden om fremtiden. P̊a nuværende
tidspunkt er denne usikkerhed kun til stede for s̊avidt ang̊ar varmebehovet, men i frem-
tiden kan brændselsudgifter og indtægten stammende fra produceret energi ogs̊a være
usikre og tidsafhængige. Det foresl̊as at løse planlægningsproblemet vha. en kombina-
tion af EDB-værktøjer og baggrundsvinde fra værkets operatør. Specifikt foresl̊as det,
at et værk udstyres med (i) et automatisk on-line system til forudsigelse af varmebe-
hovet, (ii) et interaktivt beslutningsstøttesystem vha. hvilket optimale driftforløb kan
findes, givet disse forudsigelser eller bruger-bestemte modifikationer af disse forudsigel-
ser, og (iii) et automatisk on-line system til overv̊agning af hvorn̊ar drift-betingelserne
er ændret s̊a meget at, driftplanen bør revideres. I denne rapport fokuseres der p̊a me-
toder til anvendelse i forbindelse med punkterne (ii) og (iii). For punkt (i) henvises til
(Madsen & Nielsen 1997, Nielsen & Madsen 2000).

Fremgangsmåden anvendt i denne rapport er eksplicit at beskrive, hvordan værkets
totale indtjening afhænger af driftplanen for de el- og varmeproducerende enheder
p̊a værket. Herefter anvendes optimeringsteori, i dette tilfælde dynamisk programme-
ring, for at finde en optimal driftplan. For at tage hensyn til usikkerhederne kan det
overvejes at anvende stokastisk dynamisk programmering. I rapporten argumenteres
der for, at dette er uhensigtsmæssigt, fordi systemet til forudsigelse af varmebehovet
da må integreres med optimeringssystemet, hvorved programmet ikke kan opbygges
modulært. Desuden mener vi, at alle relevante metoder til forudsigelse af varmebe-
hov er s̊a komplicerede, at denne integration vil være overordentlig vanskelig; b̊ade
usikkerheder stammenende fra varmebehovets klimaafhængighed og fra meteorologiske
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viii RESUMÉ

forudsigelser bør tages i betragtning. I stedet foresl̊ar vi, at beslutningsstøttesystemet
giver operatøren mulighed for at undersøge følsomheden af den optimale løsning mht.
variationer i input. Desuden foresl̊ar vi, at systemet udstyres med muligheden for at
simulere realiseringer af varmebehovet, baseret p̊a den faktiske forudsigelse og tidligere
fejl. Ved at lade systemet finde optimale driftplaner for hver af disse realisationer kan
operatøren opn̊a indsigt i betydningen af usikkerhederne.

Det vises, at med moderne personlige computere (f.eks. 1 GHz Pentium III), operativsy-
stemer (f.eks. RedHat Linux 6.0) og kompilerer (f.eks. GNU C 2.91) kan beregningerne
udføres hurtigt nok til anvendelse i praksis. En optimal driftplan for en uge kan let
findes indenfor 5 til 10 sekunder. N̊ar mange mulige realisationer af det fremtidige
varmebehov skal gennemregnes, er det dog nødvendigt at benytte nogle teknikker til
reduktion af den nødvendige beregningstid. Resultaterne i denne rapport indikerer,
at det er muligt at finde optimale driftplaner for 100 realisationer ved anvendelse af
mindre end 3 minutters CPU tid. Endelig tillader metoderne massiv brug af parallel
processering.
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Chapter 1

Introduction

In this report we consider load scheduling for decentralized combined heat and power
(CHP) plants. Such plants are common in district heating systems in Denmark because
they allow the heat to be produced near the end consumer and at the same time are
able to produce electricity which can easily be transmitted over long distances. In
this way the total efficiency of the energy production can be increased as compared to
plants producing only electricity.

A common configuration for a particular district heating system is that one CHP plant
supplies heat to the district heating (DH) network and electricity is sold to a power
transmission company. Furthermore, some peak-load boilers are often placed in the
DH network or near the CHP plant.

The CHP plant consists of a number of power production units, often based on engines
running on natural gas (NG) or on bio gas (BG). However, also steam turbines supplied
with heat from waste combustion or bio-fuels (e.g. wood chips) and gas turbines exist.
Peak load boilers can be considered in parallel to the remaining units if they are placed
at the CHP plant. The revenue from the electricity produced depend on the time of
day and of the day of week. Basicly, for working days, the revenue is low during the
night and high (two levels) during the day. For this and other reasons CHP plants are
equipped with a heat storage facility which allows the heat and power to be produced
during periods in which the revenue from the electricity sale is high. Some CHP plants
also have the possibility to dispose of heat by cooling. This may be advantageous if
the revenue from sale of the electricity is high enough.

Due to the heat storage facility the optimal operation of the plant depend on the future
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2 CHAPTER 1. INTRODUCTION

heat load which is unknown. However, to some extend the heat load may be predicted
on-line, see e.g. (Nielsen & Madsen 2000), and these predictions and the associated
uncertainty should be used when deciding how to run the CHP plant. Since such
predictions are updated at regular intervals it makes sense to reconsider the planned
operation of the plant at regular intervals. This can be done in a pure on-line fashion
in which an automatic control system uses predictions of heat load, together with cost-
information to find an optimal load schedule, which then is automatically transmitted
to the SCADA system. However, in this report the aim is somewhat more moderate /
realistic. We will aim at describing a system in which an operator decides the load
schedule for the plant. However, exactly as for the automatic control system, it makes
sense to reconsider the load schedule at regular intervals, maybe one or two times a
day or when expectations for the future changes. Examples of changing expectations
includes (i) large changes in the expected heat demand, e.g. due to large changes in
the weather forecast, (ii) changes in the fuel cost, (iii) time-varying fuel costs, (iv)
changes in the prices at which the electricity is sold. In these situations the operator
needs a decision support tool by which different cost-structures and restrictions on
the operation can be investigated. The tool must also help the operator to get an
overview of the uncertainties inherent in the decision problem and help taking these
into account. At present mainly the future heat demand is uncertain. In the future
the revenue of the electricity produced at a particular time of day and day of week
may not be given on beforehand. This is due to the fact that the whole Danish market
for power moves towards a spot and future/forward market. In such a situation the
planning would have to take even more stochastic effects than the future heat load into
account. Similar remarks apply for the cost of natural gas. The suggested procedure is
prepared to cover this expected situation as it allows all costs and revenues to be time-
varying in an arbitrary manner. However, to investigate the effect of the uncertainties
more simulations than considered in this report might be necessary.



Chapter 2

General considerations

2.1 Optimal operation of decentralized CHP plants

Operation of decentralized combined heat and power (CHP) plants is characterized
by the fact that the electricity produced are sold to an power distribution company
at a price which depend on time of day and week, cf. Table 4.1 on page 20. Except
for peak load boilers, the plants are often the sole suppliers of heat to a local district
heating network. Other sources of cooling than the district heating network is often
not available and thus the ratio between the heat and power production is fixed. Using
a heat storage facility the heat and power production are only tied together over long
horizons.

The heat storage facility is a tank with hot water on top and cold in the bottom.
When the storage is charged hot water is let in at the top and cold water is tapped
from the bottom. There is no physical boundary between the hot and cold water and
hence the difference in specific mass of the hot and cold water is solely responsible for
keeping the temperature levels separate. So-called diffusers are used to ensure that the
temperature gradient down trough the tank is preserved as well as possible. Due to the
construction of the storage it will always be charged with water at a temperature equal
to the temperature of the hot water already in the storage. Thus, it is only possible
to change this temperature when the storage is empty, i.e. full of cold water from the
return pipeline of the network.

The problem now consists of determining how the future heat load is allocated between

3



4 CHAPTER 2. GENERAL CONSIDERATIONS

the different heating plants in order to minimize the operational costs for an entire
district heating system consisting of heating plants and distribution network. The
objective is to minimize the expected operation costs within the planning horizon
considered given an (uncertain) predicted heat load. The planning horizon will depend
on the configuration of heating plants for the district heating system in question, but for
system with heat accumulators the necessary planning horizon will be in the magnitude
of days.

The discrete nature of a start/stop schedule, the long planning horizon, the number of
restrictions imposed on a solution for the entire system and finally the complexity of the
models describing the distribution network give rise to a problem of very considerable
size. Thus the subject/task of identifying a cost function for the operation of an entire
district heating system with multiple heating plants and following that finding a feasible
solution to the posed optimization problem will in most cases be close to impossible
due to the size of the problem which

In order to make the solution of the optimization problem feasible it is suggested to
separate the optimization of the entire system into a scheduling between the different
heat (and power) producing units including eventual heat accumulators (long plan-
ning horizon) followed by a control problem for the distribution network (considerably
shorter control horizon). The potential gains by optimal scheduling between several
production units will typically outweigh the potential gains by optimal operation of
the distribution network by a considerably margin. Hence it makes sense to let the
operation of the distribution network be subordinated the scheduling even at the cost
of a (slightly) sup-optimal solution compared to an optimization which encompasses
the entire district heating system.

The purpose of the scheduling is to derive a plan for each heating plant stating when
the plant should be running as well as the heat production level. Depending on the
configuration of production facilities the scheduling horizon will typically be up to five
or seven days ahead. The scheduling between the different production units is done on
basis of the following input:

• Predictions of heat load covering the horizon considered in the scheduling.

• Predictions covering the scheduling horizon of the necessary minimum supply
temperature in order to fulfill the consumer requirements.

• The heat production costs for the different productions units. These may vary
with time and production level. Also the start/stop costs has to be considered.
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• Limitations in the available heat production capacity. The heating plants may be
subject to contractual obligations, which may restrict the minimum or maximum
heat production. These restrictions may be time-varying. Also limitations in the
allowable rate of change of the heat production (or supply temperature) has to
be considered.

The stochastic nature of the heat load and supply temperature predictions should be
taken into account by the scheduling algorithm. Hence the scheduling could be for-
mulated as a stochastic optimization problem, where the correlation structure of the
prediction errors is included in the formulation. Possible methods to solve such a prob-
lem include stochastic dynamic programming and Monte Carlo simulations. However
as described in Chapter 1 we do not aim at a fully automatic system and therefore the
stochastic nature of the problem does not necessarily have to be included directly into
the mathematical formulation of the optimization problem, cf. Section 2.2.

The outcome of the scheduling is a plan for the various heating plants covering the
scheduling horizon. Only the first part of the plan corresponding to the horizon con-
sidered by the distribution network control is used as input to the distribution network
controller. For each of the (running) plants the schedule consists of a set of (time-
varying) constraints and reference values used as input to the distribution network
controller:

• Maximum values for the permissible supply temperature. The maximum re-
striction corresponds to the minimum supply temperature constraint used in the
scheduling.

• Flow rate for all but one of the heating plants. The low level pressure control
in the network will normally require, that the flow rate only is allowed to vary
freely for one of the heating plants. The latter should normally be the plant with
the lowest production costs.

• The desired redistribution of heat load.

This report deals with the problem of load scheduling. Control of supply temperature is
considered in e.g. (Madsen, Nielsen & Søgaard 1996), see also (Madsen & Nielsen 1997).
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2.2 Decision support system

As explained in Chapter 1 this report does not focus on an automatic control system
for controlling the production on the power production units. Instead we believe that
the operator should have tools available which supports the decision making regarding
load scheduling. Advantages of this approach includes:

• The ability for the operator to use auxiliary and not well defined information.

• The system need not to be able to handle all exceptions.

• The methods need not to be integrated into one system which takes all effects
into account. However, the tools supplied should be integrated into one system
with a common user interface.

The main disadvantage of the approach is that the operator need to use the decision
support system at a regular basis. To facilitate this approach an automatic system for
monitoring a plan could be implemented. This system should then alert the operator
when conditions have changed so much that it is sensible to reconsider the current
plan. Figure 2.1 summarizes this approach to identify and update the load schedule.
The load schedule is based on forecasts of the heat load, which is not considered in this
report, see e.g. (Nielsen & Madsen 2000). Using a decision support tool the operator
identifies a load schedule which is implemented in the SCADA system. This current
load schedule is then monitored on-line, and compared with updated forecasts of the
heat load. The automatic monitoring system alerts the operator if the current plan
seems to be sub-optimal as compared to updated information. In this case the operator
is requested to revise the load schedule.

monitoring

Heat load
forecast

Decision
support tool

Current
Schedule

Automatic

Figure 2.1: Identification and monitoring of a load schedule.
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Decision support tool: The decision support tool should allow the operator to:

• Find optimal schedules given heat load forecasts, time-varying revenue from sell-
ing power, time-varying cost of fuel, and requirements on the operation of the
plant.

• Analyze the sensitivity to deviations from the forecasted heat load.

• Simulate the future heat load and find optimal schedules given these simulated
heat loads.

In all cases the optimal schedules can be found using deterministic dynamic program-
ming. This is exemplified for Sønderborg Kraftvarmeværk in Chapters 4 and 5. How-
ever, this approach assumes the future heat load, revenue per unit power, and fuel
costs to be known. Consequently, the load schedules identified are not guaranteed to
be optimal in the actual setting where the future heat load is only known to some
extend. The decision support tool circumvents this by allowing the operator to modify
the forecast and find the resulting optimal schedule. A more stringent approach is to
simulate a number of future paths of the heat load and find optimal schedules for each
of these. Based on these the operator can identify a schedule which take the uncertain-
ties into account. Section 7.1 considers how to simulate the heat load independently of
the actual system producing the forecasts; this approach allows for a modular design of
the software. The issue of uncertainty, or stochastic effects, are discussed in Chapter 7.
The approach above corresponds to item 3 on page 41.

Automatic monitoring: The automatic system for monitoring the current load
schedule should alert the operator if the schedule becomes sub-optimal. Strictly speak-
ing, this is not possible without a system which can automaticly find optimal schedules.
Since the entire approach is based on the assumption that it is unpractical to develop
such a system the monitoring system is proposed to be based on secondary indicators
and alarm levels. The monitoring system should display:

• The most recent heat load forecast together with the forecast in effect when the
current load schedule was decided upon.

• The actual content of the heat storage together with the content forecasted when
the current load schedule was decided upon.

• The actual load of the production units as compared to the planned.



8 CHAPTER 2. GENERAL CONSIDERATIONS

• The optimal schedule (in the deterministic setting) given the most recent forecasts
of the heat load together with the current schedule.

The type of alarms and the alarm levels should be configurable. Some relevant alarms
could be based on:

• Feasibility of the current load schedule as compared to the most recent forecast.

• Difference in the actual and expected content of the heat storage.

• Difference in forecasts.

• Difference in revenues, given the most recent heat load forecast, of the current
schedule and the optimal schedule given the most recent heat load forecast.



Chapter 3

Dynamic Optimization

To make the report self-contained the dynamic optimization problem is introduced and
its solution obtained by the use of dynamic programming is introduced in this chapter.
We have chosen dynamic programming for solving the optimization problem since it can
be applied without restrictions on the properties of the criteria function or on the set
of restrictions. Compared to many other methods for dynamic optimization the cost of
this decision is (i) a relatively slow algorithm, and (ii) the need to formulate a discrete
version of the optimization problem. In Section 5.2 these aspects are considered for
the particular application. This chapter is based on (Ravn 1996).

3.1 The dynamic optimization problem

The dynamic optimization problem in discrete time, also termed the discrete time
optimal control model, consists of a criteria function additive in the time steps i =
0, . . . , N − 1, a number of control variables ui ⊆ Rm, a number of state variables
xi ⊆ Rn, an equation describing the evolution of a state vector, a set of restrictions on
the control and state vectors, and a restriction on the final value of the state. This can

9



10 CHAPTER 3. DYNAMIC OPTIMIZATION

be formulated as

max

N−1∑

i=0

fi(xi,ui) + fN (xN) (3.1)

w.r.t.
xi+1 = di(xi,ui) i = 0, . . . , N − 1

(xi,ui) ∈ Vi i = 0, . . . , N − 1
xN ∈ XN

where u1,u1, . . . ,uN−1 should be chosen to maximize the criteria function. V0 must
be chosen to reflect the fact that the initial state x0 is known.

In the context of this report we can think of the summation in the criteria function
as describing the revenue from running the CHP plant over the horizon considered.
The last term in the criteria function can be used to assign a value to the final storage
content. The state x could contain the content of the storage and, possibly, the state
of the gas turbine with the purpose of including start/stop costs. The multivariate
control variable u will contain the load of the heat and/or power producing units on
the plant.

3.2 Dynamic programming

The dynamic structure of the optimal control problem (3.1) is shown in Figure 3.1.

.. ..0 1 i N−1
xN−1x0 x1 xi xi+1 xN

fN (xN )

u0 u1 ui uN−1

f1(x1,u1) fN−1(xN−1 ,uN−1)fi(xi,ui)f0(x0,u0)

Figure 3.1: Dynamic structure of the optimal control problem.

It is seen that if xN−1 is known then the optimal uN−1 can be found by considering
the criteria function

fN−1(xN−1,uN−1) + fN (xN) = fN−1(xN−1,uN−1) + fN(dN−1(xN−1,uN−1)).



3.2. DYNAMIC PROGRAMMING 11

This optimization problem will have m control variables, as compared to mN for the
original problem. Let u∗i denote the optimal control at time i. It is then clear that the
optimal control at time N − 1 is a function of the state at time N − 1 and we may
write

u∗N−1(xN−1).

Furthermore, it is clear that the optimal value of the criteria function depends on xN−1

only and we can write the contribution at times N − 1 and onwards to the criteria
function as

FN−1(xN−1) = fN−1(xN−1,u
∗
N−1(xN−1)) + fN (dN−1(xN−1,u

∗
N−1(xN−1)). (3.2)

For completeness we define

FN (xN) = fN (xN). (3.3)

Given xN−2 we can then find u∗N−2(xN−2) by considering the criteria function

fN−2(xN−2,uN−2) + FN−1(dN−2(xN−2,uN−2)),

since

xN−1 = dN−2(xN−2,uN−2).

Again it is seen that the optimal control at time N − 2 is a function of the state only
and thus we may write

u∗N−2(xN−2)

and furthermore

FN−2(xN−2) = fN−2(xN−2,u
∗
N−2(xN−2)) + FN−1(dN−2(xN−2,u

∗
N−2(xN−2)). (3.4)

It is seen that this process, also called the backwards recursion, can be continued until
the known initial state x0 is reached.

When the backward recursion is terminated at the initial (known) state the initial
optimal control u∗0 will be known. From this the state at time 1 can be found as
x∗1 = d0(x0,u

∗
0) whereby the optimal control at time 1 can be found as u∗1(x∗1). This

forward recursion can be continued until all optimal controls are known.

For a more formal introduction to dynamic programming, including Bellman’s principle
of optimality, the reader may consult (Ravn 1996, Section 7.4). See also (Bellman 1957).



12 CHAPTER 3. DYNAMIC OPTIMIZATION

3.3 Discrete formulation

In the previous section we considered the functions u∗i (xi) and Fi(xi). In the general
case, i.e. without assumptions regarding the parametric form of the criteria function,
these can not be expressed in a simple way. In this report we therefore calculate the
functions at a number of discrete values of the state xi and use multidimensional inter-
polation (Press, Teukolsky, Vetterling & Flannery 1992) to obtain values for arbitrary
arguments. Using this approach the number of optimization problems which must be
considered during the backwards recursion will grow exponentially with the dimension
of the state vector. However, not all of these need to be solved since some combina-
tion of states may not be feasible. The optimization problems at each stage of the
backwards recursion is of dimension one in this report and for this we employ golden
section search (Press et al. 1992). For the examples considered in Chapter 5 we only
need to determine if the gas turbine should be stopped or not.

Due to the large number of calculations which must be performed the core of the
optimization algorithm need to be implemented in a relatively low-level computer lan-
guage such as C or Fortran. When the number of states increases it will be necessary
to use parallel programming to be able to obtain a solution within a reasonable time.
Fortunately, the calculations which must be performed at each stage of the backward
recursion are not dependent. For this reason it is relatively uncomplicated to imple-
ment the method so that parallel processing can be applied. However, at the present
point in time, we believe that the cost of appropriate hardware will be too high for
use in production planning at decentralized CHP plants. Furthermore, the exponential
growth will always be prohibitive for some number of state variables. A more promis-
ing approach, which do not exclude parallel processing, is suggested by Chen, Ruppert
& Shoemaker (1999) who attack the problem by not considering all points in the grid
spanned by the discrete values of the state variables.

As an example consider a function of two scalar arguments and assume that 10 levels
of each argument are considered. The levels are denoted xi; i = 1, . . . , 10 and yj; j =
1, . . . , 10 If all combinations is to be investigated the function need to be evaluated 100
times. Now if it is assumed that the function is additive in the arguments, i.e.

f(xi, yj) = µ+ αi + βj

where
∑

i αi =
∑

j βj = 0, then the values at the levels can be described by use of 19
coefficients. These coefficients can be obtained by evaluating the function at 19 of the
100 combinations of levels, see also Figure 3.2.

The above example is a simplification of the approach used by Chen et al. (1999)
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Figure 3.2: Points needed for an additive model (◦) and a non-additive model (×).

to reduce the number of combinations which must be investigated at each stage of
the backward recursion. However, the function is not assumed to be fully additive in
the arguments. Instead, it is assumed that some low-order interactions between state
variables might be present and the grid-points are selected by use of an experimental
design tuned to detect such interactions. Furthermore, regression splines are used to
generate a continuous representation of the functions. Since some low-order interactions
are allowed for the approach outlined above is only beneficial when the number of state
variables is high.

We have not used the approach in this report since for the example considered we
have two state variables only, however, see Chapter 7. Furthermore, it will be quite
time-consuming to implement the methods.
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Chapter 4

Model of Sønderborg CHP plant

The combined heat and power plant in Sønderborg, Denmark consists of a waste com-
bustion unit, a gas turbine, a steam turbine, and a heat storage facility. The steam
turbine receives steam from the waste combustion unit and, via an exhaust gas boiler,
from the gas turbine. Furthermore, some cooling towers are installed. Figure 4.1
shows an outline of plant without the cooling towers. The power produced is sold to
the power transmission company Eltra at a price depending on the time of day/week
and the natural gas are purchased from the distribution company Naturgas Syd I/S at
a price which in the future will be varying to some extend.

In this chapter we will formulate a model of Sønderborg CHP plant which allows us to
determine the optimal operation of the gas turbine given the heat demand, the amount
of steam coming from the waste combustion unit, and the amount of cooling. Cooling
will not be explicitly mentioned since it can be handled as an extra heat demand. For
other plants cooling might introduce a loss of revenue from selling heat.

The aim of this chapter is to demonstrate how optimization can be applied to find good
solutions for arbitrary time-variations of the power- and gas-price. Consequently, the
focus has not been on modelling the revenue/cost-structure of Sønderborg CHP plant
in all details. As will be clear from Section 4.1 the important aspect is that the total
revenue can be expressed as a function of the amount of natural gas used in each time
step.

15
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Figure 4.1: Outline of Sønderborg CHP plant. Cooling towers are not shown.

4.1 Description of the system

A graphical description of the mathematical model is depicted in Figure 4.2. The
model has the following inputs:

• Fg; the amount of natural gas used by the gas turbine.

• Hw; the amount of steam coming from the waste combustion unit.

The model has the following outputs:

• δwHw; the amount of energy needed for pre-heating in the waste combustion unit.



4.1. DESCRIPTION OF THE SYSTEM 17

Gas
Turbine

Comp.

Exhaust
Gas

Boiler

+

Steam
Turbine

+

Heat
Storage

Pg

Fg

Ps

Hes

Hew

Hg

Hso

Hsi

Hw

H

δwHw

D

Figure 4.2: Graphical description of the model for Sønderborg CHP plant.

• D; the heat demand of the district heating network connected to the plant.

• Pg; the power produced by the gas turbine.

• Ps; the power produced by the steam turbine.

Finally the model has the following internal variables:

• Hg; the amount of heat in the exhaust from the steam turbine.

• Hes; the amount of steam produced by the exhaust gas boiler.

• Hew; the amount of hot water produced by the exhaust gas boiler.

• Hsi; the amount of steam going to the steam turbine.

• Hso; the amount of heat coming from the steam turbine.
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• H; the amount of heat going to the heat storage facility.

• A; the amount of heat stored in the heat storage facility.

For the variable A the unit is MWh and for the rest the unit is MW .

The amount of power which is sold to the power transmission company is

P = (1− δp)(Ps + Pg), (4.1)

where δp denotes the fraction of the power used by the plant itself.

The gas turbine is either not running or it is running at a constant load. Therefore it
can be characterized by two constants ηgp and ηgh indicating the fraction of Fg which
is turned into power (Pg) and heat (Hg), respectively:

Pg = ηgpFg
Hg = ηghFg

. (4.2)

Hence the exhaust gas boiler can also be described by two constants ηes and ηew in-
dicating the fraction of Hg which is turned into steam (Hes) and hot water (Hew),
respectively:

Hes = ηesHg

Hew = ηewHg
. (4.3)

For the steam turbine it is necessary to know how much of the steam Hsi is turned into
power (Ps) and heat (Hso) at different loads. It is assumed that this can be handled
by letting these fractions depend on the load in terms of Hsi, i.e.

Ps = ηsp(Hsi)Hsi

Hso = ηsh(Hsi)Hsi
(4.4)

The terms ηsp(Hsi) and ηsh(Hsi) are called efficiency curves. The quantity 1−ηsp(Hsi)−
ηsh(Hsi) is the relative loss from the steam turbine and the generator connected to it.
The input to the steam turbine Hsi is given by

Hsi = Hes +Hw. (4.5)

The total amount of heat produced H is given by

H = Hso +Hew − δwHw, (4.6)
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which can be regarded as a function of the amount of natural gas used Fg and given a
number of constants (mainly efficiencies), including the amount of steam coming from
the waste combustion unit Hw.

Finally, the heat accumulator must be described by a dynamic equation. Here a
discrete-time formulation will be used:

At = (1− ηa∆t)At−∆t + ∆t (H(Fg,t)−Dt) , (4.7)

in which the variables are indexed by time and ∆t is the length of the time interval.
Hence At is the amount of heat accumulated at time t, ηa is the relative heat loss
during ∆t, ∆tDt is the heat demand over the period from t−∆t until t and ∆tH(Fg,t)
is the amount of heat produced during the same period.

The CHP plant will impose some restrictions on the operation. As already mentioned
the gas turbine will either be stopped or it will run at a certain level, i.e.

Fg ∈ {0, fg}, (4.8)

where fg is the amount of gas used when the turbine is running. The heat accumulator
has a given capacity in terms of a volume, which is converted in to MWh by use of
the following relation

Amax =
ρV Cp∆T

3.6× 109J/MWh
, (4.9)

where ρ is the specific mass of water, Cp is the specific heat capacity of water, V is the
volume of the tank (11500m3), and ∆T is the difference between the supply and return
temperatures of the water in the district heating system. This results in the following
restriction on At for all points in time:

At ∈ [0, Amax]. (4.10)

If not stated otherwise we use ∆T = 40.58 ◦C and the values of ρ and Cp at 62 ◦C
(Incropera & DeWitt 1985, Table A.6), i.e. ρ = 982.3 kg/m3 and Cp = 4186 J/(kg ·K).
Hence Amax = 533 MWh.

4.2 Revenues and costs related to the operation

The revenues from running the plant consist of a revenue from selling power to the
transmission company and of a revenue from the combustion of waste. Since we will
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consider the heat supplied from the waste combustion unit as given it is not necessary
to take this into account when optimizing the operation of the gas turbine. Likewise,
the heat demand can not be influenced by the operation of the plant, and for this
reason it is not necessary to consider the revenue from selling heat to the district
heating network.

Power: The revenue from selling power depends on the time of day on which the
power is produced; an example is depicted in Figure 4.3 and Table 4.1 list the actual
prices and periods. However, for the CHP plant considered here the periods may
deviate from what is shown in Table 4.1. This is decided by the power transmission
company and the information is available to the CHP plant one week in advance. Here
this problem is handled by letting the revenue per MWh power sold depend on the
running time in a totally unrestricted fashion, i.e. when the period from time t until
t+K∆t is considered the revenue from selling power is

K∑

k=1

c
(p)
t+k∆t∆tPt+k∆t, (4.11)

where the time index t + k∆t indicates the period from t + (k − 1)∆t until t + k∆t,

c
(p)
t+k∆t is the revenue per MWh in the period just mentioned, and Pt+k∆t is the average

power in MW in the same period of time, ∆t is measured in hours. Note that no
restrictions on the development of c(p) over time is assumed.

Load
Low High Peak

Mon. – Fri. (153 DKr/MWh) (359 DKr/MWh) (483 DKr/MWh)
Oct. – Feb. 21:00 – 06:30 06:30 – 07:30 07:30 – 12:00

12:00 – 17:00 17:00 – 18:30
18:30 – 21:00

Oct. – Feb. 21:00 – 06:30 06:30 – 07:30 07:30 – 12:00
12:00 – 21:00

The following days are always defined as low load: Weekends, Maundy
Thursday, Good Friday, Easter Monday, Friday four weeks after
Easter (St. Bededag), Ascension Day, With Monday, and December
25-26.

Table 4.1: Revenue from selling power.
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Figure 4.3: Normal revenue from selling power for one week starting at midnight
Monday, 1 Oct. 1999.

Natural Gas: The natural gas used is purchased from a distribution company. Since
the price of the gas in the future may depend on when it is used we will use a formulation
similar to (4.11). However, due to taxation, the price of gas depends on whether the gas
is used for producing heat or for producing electricity. Although, this is not physically
well defined some reasonable approximations has been agreed on. For the CHP plant
in Sønderborg these approximations are described below.

With the notation used above and indicated in Figure 4.2 the heat production origi-
nating from natural gas is calculated as

HNG = Hew + (H −Hew)
Hes

Hw +Hes

. (4.12)

Considering the time period from t until t + K∆t the cost of natural gas can then be
expressed by weighting the cost of natural gas used for heat production c(ng,h) and the
cost of natural gas used for power production c(ng,p) relative to the amount of natural
gas used for heat production, i.e.

K∑

k=1

(
c

(ng,h)
t+k∆t

HNG,t+k∆t

Ht+k∆t
+ c

(ng,p)
t+k∆t

(
1− HNG,t+k∆t

Ht+k∆t

))
∆tFg,t+k∆t. (4.13)
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Start/stop: There is a cost associated with the number of times the gas turbine is
started. These start/stop costs will be included in the simplest possible way. It is
assumed that the cost of starting the unit will not depend on how long time it has
been stopped. This cost c(s) should include extra fuel and power needed together with
wear and tear from starting and stopping. No explicit cost is assigned when the unit
is stopped, but since a start must eventually be followed by a stop the wear and tear
originating from stopping should be assigned when starting the unit. Under these
assumptions start/stop costs for the time period from t until t+K∆t can be expressed
as

K∑

k=1

c(s)I(Fg,t+k∆t > 0 ∧ Fg,t+(k−1)∆t = 0), (4.14)

where I(u) is one if the logical expression u is true and zero otherwise.

Maintenance: Besides the start/stop cost, there is a maintenance cost associated
with the amount of power produced by the gas turbine. This cost is modelled as

K∑

k=1

c(m)∆tPg,t+k∆t. (4.15)

Criteria function: The revenue from running the plant over the time period from
t until t + K∆t is the revenue from selling power (4.11) with the cost of natural gas
(4.13), start/stop (4.14), and maintenance (4.15) subtracted. As noted on page 18 the
total heat produced can be regarded as a function of the amount of natural gas used
Fg. This is also true for the power production and for the amount of natural gas used
for producing heat. Thus, the total revenue can be expressed as

K∑

k=1

rt+k∆t(Fg,t+k∆t, Fg,t+(k−1)∆t), (4.16)

where

rt+k∆t(Fg,t+k∆t, Fg,t+(k−1)∆t) =

c
(p)
t+k∆t∆tP (Fg,t+k∆t)

−
(
c

(ng,h)
t+k∆t

HNG(Fg,t+k∆t)

H(Fg,t+k∆t)
+ c

(ng,p)
t+k∆t

(
1− HNG(Fg,t+k∆t)

H(Fg,t+k∆t)

))
∆tFg,t+k∆t

− c(s)I(Fg,t+k∆t > 0 ∧ Fg,t+(k−1)∆t = 0)

− c(m)∆tPg(Fg,t+k∆t), (4.17)

is the revenue in the time period from t+ (k − 1)∆t until t+ k∆t.
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4.3 Formulation of the optimization problem

Using (4.17), (4.6), and (4.7) the operation of the gas turbine during the time period
from t until t + K∆t can be decided using the following mathematical formulation
which in turn form the basis of a computer implementation

max

K∑

k=1

rt+k∆t(Fg,t+k∆t, Fg,t+(k−1)∆t) + c
(a)
t+K∆tAt+K∆t (4.18)

w.r.t.
At+k∆t = (1− ηa∆t)At+(k−1)∆t + ∆t (H(Fg,t+k∆t)−Dt+k∆t)
At+k∆t ∈ [0, Amax]
Fg,t+k∆t ∈ {0, fg}

which is solved to find optimal values for Fg,t+k∆t; k = 1, . . . , K. The initial content of
the heat storage At and the state of the gas turbine Fg,t is assumed to be known. In the
criteria the terminal content of the heat storage At+K∆t is assigned a value (positive

or negative) per energy unit c
(a)
t+K∆t. The bounds on the storage content are constant

over the time period in the formulation used above. However, it does not complicate
the solution of the problem to use varying bounds and it is often relevant to bound
the terminal content of the heat storage. Especially, when it is not assigned a value
(c

(a)
t+K∆t = 0).

Note that when considering period k, i.e. the time period from t + (k − 1)∆t until
t + k∆t, the load of the gas turbine in the previous period Fg,t+(k−1)∆t acts as a state
variable. This is clearly seen when considering inputs and outputs from time step k as
depicted in Figure 4.4.

Note also that in this section we use a different notation for the time steps than in
Chapter 3. Here we generally index a variable by the right endpoint of the time step
up to that endpoint. The exception of this is the storage content which in principle is
valid for the actual time index only.

4.4 Numerical values

This section lists the numerical values used for Sønderborg CHP plant. These values
are identified in cooperation with Sønderborg Kraftvarmeværk.
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Fg,t+k∆t

Fg,t+(k−1)∆t Fg,t+k∆t

[t + (k − 1)∆t; t+ k∆t]

rt+k∆t(Fg,t+k∆t, Fg,(k−1)∆t)

At+(k−1)∆t At+k∆t

Figure 4.4: Inputs and outputs at time step k, i.e. the time period from t+ (k − 1)∆t
until t + k∆t.

Physical description of the system:

δw = 0.1914

δp = 0.04

ηgp = 0.3951

ηgh = 0.5749

ηes = 0.7351

ηew = 0.2030

ηsp(Hsi) = 0.1674 + 0.0007908 MW−1 ×Hsi

ηsh(Hsi) = 0.8001− 0.0007892 MW−1 ×Hsi

ηa = 0

Bounds on operation:

fg = 100 MW

Amax = 533 MWh
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Revenues and Costs:

c(p) as described in Table 4.1.

cng,h = 76.8640 DKr/MWh

cng,p = 25.6213 DKr/MWh

c(s) = 3000 DKr

c(m) = 40 DKr/MWh



26 CHAPTER 4. MODEL OF SØNDERBORG CHP PLANT



Chapter 5

Sønderborg CHP plant – examples

Examples of optimal operation of the gas turbine at Sønderborg CHP plant is included
in this chapter. In the examples it is assumed that the load of the waste combustion
unit is given and that the cooling towers are not used. The underlying model used
for maximization of the revenue is described in Chapter 4. The optimization examples
are performed using data from the SCADA system of the CHP plant. The heat rate
coming from the waste combustion unit is taken as the average of this quantity over
the individual half-hour periods for which the optimizations are carried out.

5.1 Results

Figure 5.1 show the hourly heat demand for the last quarter of 1999. From this series
a number of periods are selected in the this section. For each of these periods the
optimal schedule for the gas turbine is found. As compared to Section 2.2 this does
not conform to the actual use of dynamic programming since forecasted or simulated
heat demands is supposed to be used. However, because we do not have access to
meteorological forecasts we are not able to use actual forecasts of the heat load, cf.
(Nielsen & Madsen 2000).

From the data shown in Figure 5.1 four periods of length one week were initially
selected. All periods start on Monday at 06:30 (the time at which the high-load period
starts) and is of the length of one week. The time interval (∆t) used is 30 minutes;
interpolation is used to generate heat demand data corresponding to the interval length,

27
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Figure 5.1: Hourly heat demand in MW for the last quarter of 1999.

and it is assumed that the heat storage is empty and the gas turbine stopped at the
onset of the periods. The four periods start at:

Period 1: Monday, October 4, 1999, 06:30.

Period 2: Monday, October 11, 1999, 06:30.

Period 3: Monday, November 1, 1999, 06:30.

Period 4: Monday, December 13, 1999, 06:30.

The optimal operation of the gas turbine found using dynamic programming and dis-
crete levels of the heat storage corresponding to steps of 1 MWh are shown in Figure 5.2
(period 1), 5.3 (period 2), 5.4 (period 3), and 5.5 (period 4). No restriction on the ter-
minal content of the heat storage are imposed, instead the terminal storage content is
assigned the cost 185 DKr/MWh (c(a) = −185 DKr/MWh).1

1When the gas turbine runs 1 MWh of heat corresponds to approximately 0.9 MWh of power. If
this is produced at 153 DKr/MWh instead of 359 DKr/MWh, then 0.9× (359− 153) = 185 DKr
is lost for every MWh in the heat storage Monday morning.
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The results are quite plausible:

• For period 1 with the lowest heat demand (approximately 3450 MWh) the gas
turbine almost only runs during peak-load periods.

• For period 2 with a heat demand of approximately 3950 MWh the gas turbine
runs mainly in peak-load periods, but also in some high-load periods, so that
the heat storage is full on Friday, October 15 at 21:00. Hereafter, the storage is
emptied during the weekend and it is necessary to run the gas turbine during a
low-load period and stop it so that the storage is empty Monday morning.

• For period 3 with a heat demand of approximately 4800 MWh the gas turbine
runs most high-load and all peak-load periods and it is necessary to start it during
the weekend also.

• For period 4 with a heat demand of approximately 8340 MWh the gas turbine
runs for almost the entire period. Note however, that opposed to the periods 1–3
it is not optimal to have the heat storage full Friday at 21:00. This is due to the
capacity limit of the heat storage. If the storage capacity were approximately 590
MWh, corresponding to a temperature difference of approximately 45 ◦C, then it
would be possible to keep the gas turbine running until Friday at 21:00. However,
unless the capacity were larger than 800 MWh (corresponding to a temperature
difference of 61 ◦C), it would not be possible to avoid the start during the period.

For period 2 the gas turbine is started at 06:00 in the end of the period (Monday,
October 18). This seems suboptimal in that the power produced must be sold at the
low rate, cf. Table 4.1. Using discrete levels of the heat storage corresponding to steps
of 0.1 MWh confirms this because the gas turbine is not started in this case. However,
used in a decision support tool we do not regard the suboptimal start described above
to be a serious problem in that the operator will be able to take appropriate actions.
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Figure 5.2: Optimal operation of gas turbine for one week starting on 1999.10.04
(criteria function: 612526 DKr).
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Figure 5.3: Optimal operation of gas turbine for one week starting on 1999.10.11
(criteria function: 631390 DKr).
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Figure 5.4: Optimal operation of gas turbine for one week starting on 1999.11.01
(criteria function: 793807 DKr).
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Figure 5.5: Optimal operation of gas turbine for one week starting on 1999.12.13
(criteria function: 940135 DKr).
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5.2 Computation time

The examples for which results are presented in Section 5.1 uses approximately two
minutes of CPU on a PC with a 450 MHZ Intel Pentium III processor, running Linux
(RedHat 6.0) and using the GNU C compiler (version 2.91) with level 3 optimization
of the executable code. However, for the optimization problem considered the imple-
mentation is not optimal. This is because the implementation solves a much more
complicated optimization problem in which many more restrictions to the operation
of the gas turbine can be imposed. Furthermore, the implementation can optimize
the operation of a gas turbine capable of varying the load. Hence, it is expected that
the solution of the problem can be obtained quicker by using a more dedicated im-
plementation. However, in the following we will consider the actual implementation
only.

When solving the optimization problem it is first transformed into a discrete version
by only considering a fixed number of levels in the heat storage. This operation is
characterized by the interval length in MWh. For small intervals we obtain a solution
close to one of the true optimal solutions. For the optimization problem starting in
the morning of Monday, October 4, 1999 (cf. Figure 5.2) Figure 5.6 shows the revenue
obtained (i.e. the optimal value of (4.16) on page 22) plotted against the CPU time
used to find the optimal solution for different values of the discretization used for the
heat storage. The discretization is chosen so that it spans the entire interval ranging
from 0 MWh to the capacity of the heat storage (533 MWh) and consequently not all
step sizes are feasible.

For the fine discretization of 0.1 MWh (24 minutes of CPU time) the revenue obtained
is 612500 DKr, this is also true for discretizations up to 5 MWh (24 seconds) and for
the discretization corresponding to 14.8 MWh (8 seconds). For 9.9 MWh (12 seconds)
and 19.7 MWh (6 seconds) the revenue is marginally lower (550 DKr). Finally, for
discretizations corresponding to 29.6 MWh (4 seconds), 38.1 MWh (3 seconds), and
48.5 MWh (2.4 seconds) the revenue is approximately 3000 DKr lower than for 0.1
MWh. For the period starting in the morning of Monday, November 1, 1999 (cf. Figure
5.4) there is a loss of 6000 DKr (0.8%) when going from a discretization corresponding
to 9.9 MWh to one corresponding to 15 MWh. Consequently, although there is
some variation between periods, a very precise solution should be obtainable using a
discretization corresponding to 5 or 10 MWh. This solution can be found using 12 to
24 seconds of CPU time.

However, processors with a clock frequency of 1 GHz will be able to increase the speed
with a factor of more than two. Finally, we mention that dynamic programming can
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easily be solved using parallel programming and the speed will be increased with a
factor almost equal to the number of processors, as long as the number of processors
is less than two times the number of discrete levels of the heat storage2 and assuming
that the hardware and operating system can efficiently handle multiple processors.
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Figure 5.6: Revenue versus seconds of CPU time used on a PC with a 450 MHZ

Pentium III processor running Linux for varying degrees of discretization as indicated
below each point (MWh). The horizontal line indicates the revenue obtained using
steps of 0.1 MWh (approx. 24 min.). The optimization problem is the one considered
in Figure 5.2. Note the log-scale on the horizontal axis.

2At each time step, both the cases of running and stopped gas turbine must be considered.



36 CHAPTER 5. SØNDERBORG CHP PLANT – EXAMPLES



Chapter 6

Model of Sønderborg CHP plant –
varying load

It might be considered to run the gas turbine like the one at Sønderborg Kraft-
varmeværk at varying load. This will however require knowledge about the efficiencies
ηgp and ηgh in (4.2) on page 18 for a range of values of Fg. Furthermore, it will re-
quire information about the implications for the maintenance costs. In this chapter,
although this information is not available to us, we will illustrate how such information
can be used when finding optimal schedules.

The most simple approach would be to select the load of the gas turbine each time
it is started, but not changing the load while the gas turbine is running. The task of
scheduling the load would then be to decide when the gas turbine should be started
and determine the load for each period in which it is running.

The mathematical formulation of this optimization problem is like (4.18) on page 23,
except that instead of the restriction on Fg,t+k∆t in (4.18) on page 23 we use the two
restrictions:

Fg,t+k∆t ∈ {0, [fg,min, fg,max]} (6.1)

and

(Fg,t+k∆t − Fg,t+(k−1)∆t)× I(Fg,t+k∆t > 0 ∧ Fg,t+(k−1)∆t > 0) = 0, (6.2)

where I(·) is 1 if its argument is true and 0 otherwise. That is when the gas turbine
is running it must run with a minimum load of fg,min and a maximum load of fg,max,
and the load must not be changed while the gas turbine is running.
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In the following we assume that fg,min = 50MW and fg,max = 100MW . For the
efficiencies we assume that the total efficiency of the gas turbine (ηgp + ηgh) is 97% (as
in Section 4.4). For the power-efficiency we assume that it is constant and equal to
the one used in Section 4.4 for Fg ≥ 80MW ; for Fg below 80 MW we assume that it
decreases linearly to 30% at 50 MW ; see Figure 6.1.
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Figure 6.1: Assumed efficiency of producing power (ηgp) on the gas turbine against the
load of the gas turbine (Fg).

The results are shown for the one-week period starting with an empty storage and a
stopped gas turbine on 06:30, Monday, Oct. 1, 1999 the (period 3 in Section 5.1). A
step size of 5 MWh for the storage content and 1 MW for the load of the gas turbine
was used when solving the optimization problem. The resulting optimal schedule is
displayed in Figure 6.2. It is seen that the schedule is almost identical to the schedule
found using the original setup, cf. Figure 5.4. The most pronounced difference is that
the algorithm selects a load of 80 MW natural gas for the period during the weekend.
However, since the efficiency is constant for loads between 80 and 100 MW both
solutions are optimal for the setting considered here. The difference in the terminal
storage content accounts for the difference in the total amount of natural gas used over
the period.

If the power efficiency for a load of 80 MW is increased by approximately 1.5% to 41%1

the optimal schedule displayed in Figure 6.3 is obtained. It is seen that the solution
tries to balance producing power when the price is high with the better efficiency
obtained when the load is not so high. Although, the assumed dependence of the
efficiency on the load may not be realistic, this example shows that small variations
in the efficiencies around the maximum load may alter the optimal schedule. In fact,
except for the weekend, the minimum load is 90 MW for which the power efficiency
gets 40.4% or only 0.9% higher than for a load of 100 MW .

1The assumption is not very plausible but serves to illustrate the method.
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Figure 6.2: Optimal operation of gas turbine for one week starting on 1999.11.01.
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Figure 6.3: Optimal operation of gas turbine for one week starting on 1999.11.01.



Chapter 7

Stochastic effects

In practice the future heat demand, as compared to time t, Dt+k∆t; k = 1, . . . , K is
not known, but systems exist which are able to predict the heat demand with some
uncertainty (Madsen & Nielsen 1997, Nielsen & Madsen 2000). To account for the
stochastic effects in the decision problem a number of approaches exists.

1. Formulate the decision problem as a maximization of the expected revenue from
running the plant and use stochastic dynamic programming (SDP) to solve the
problem. See e.g. (Ross 1995).

2. Impose superficial bounds on the content of the heat accumulator thereby making
the recovery from deviation of the actual values from the predictions possible.

3. Use information from the variance / covariance structure of the predictions to
simulate, e.g. 100, possible realizations of the future heat load. Find the optimal
solution for each realization and compose these solutions into a decision about
how to run the plant.

Re. 1:
Maximization of the expected revenue may be regarded as the best solution to the
handling of stochastic effects. However, it is very computational demanding (Chen
et al. 1999) and it requires the model used in the prediction method to be build into
the solution method. Comparing with (Nielsen & Madsen 2000) it is seen that this will
make the state vector very large, whereby complicated methods as described in (Chen
et al. 1999) is required. Furthermore, from a more practical point of view, it will link
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the solution method tightly with the prediction method, making modular design and
implementation difficult or impossible.

Re. 2:
This method is used in (Nielsen 1991). The approach is relatively simple but requires
knowledge about the variance / covariance structure for the bounds to be calculated.
A more serious reservation against the method is that it makes it difficult to investigate
when the heat accumulator should be empty or full.

Re. 3:
The method requires a unique relation between the future heat demand and the optimal
solution of the individual deterministic decision problems. The solution to decision
problems such as (4.18) may not be unique, but if the summands in the criteria function
are multiplied with a factor decreasing with increasing k it is plausible that the solution
is unique (although this still needs to be investigated further). Given 0 < α < 1, and
in practice close to 1, the criteria in (4.18) is then replaced with

K∑

k=1

αkrt+k∆t(Fg,t+k∆t, Xt+k∆t) + c
(a)
t+K∆tAt+K∆t (7.1)

The method does not result in a unique solution for the stochastic decision problem,
but it presents a number of good solutions depending on the future heat demand. The
approach leaves room for a qualified person to take other information into account and
use this to decide on a plan about how to run the plant in the near future. Combined
with tools for monitoring such a plan, this approach seems to provide a reasonable
combination of automation and input from qualified personnel. A more detailed de-
scription of the general features of such a decision support system can be found in
Section 2.2.

7.1 Simulation of heat demand

It is assumed that predictions of the heat demand are received on-line from an other
system such as PRESS (Madsen & Nielsen 1997). Ideally, the model(s) used in the
prediction system should be used to generate simulations of the future heat demand.
However, to allow for a modular structure of software implementing these methods
this path will not be followed. Instead it will be assumed that the optimization system
receives the predictions and actual values of the heat load. Based on this it internally
generates the simulations. Using this approach it is possible to plug-in a new predic-
tion system without modifying the optimization system. If this changes the covariance
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structure of the prediction errors the optimization system should automatically learn
this new structure, but the simulations can not be trusted until the structure is learned.
The simulations should be generated under the assumption that the mean of the pre-
diction errors is zero. If this is not true it should be accounted for by updating the
prediction system.

In the following we assume that the time scale is rescaled so that the time step ∆t = 1.
Let et|s denote the prediction error when predicting the heat load at time t given
information up to time s. The prediction errors may be collected into a matrix in
which the columns k = 1, . . . , K indicate the prediction horizon and the rows indicate
the time at which the predictions are generated, i.e.




...
...

...
et|t−1 et+1|t−1 . . . et−1+K|t−1

et+1|t et+2|t . . . et+K|t
...

...
...


 , (7.2)

this constitutes a K-dimensional stochastic process in which simulations can be per-
formed if it is modelled. However, for the purpose of generating simulations corre-
sponding to a particular optimization problem, i.e. a particular t e.g. in (7.1), only row
t in (7.2) needs to be simulated. To simulate the row the multivariate cumulative distri-
bution function F (et+1|t, et+2|t, . . . , et+K|t) must be known. Let et = [et+1|t, . . . , et+K|t]T .

If et is MVN(0,Σ) then an estimate of Σ is S = (1/N)
∑N

t=1 ete
T
t , where N is the

number of rows in (7.2). S is also called the sample covariance matrix function in lag
zero of the multivariate process (7.2) (Box, Jenkins & Reinsel 1994).

Normally, prediction methods will be adaptive and therefore the estimate S should
also be allowed to change over time. Assume that row t is the last row in (7.2). Using
weights decreasing exponentially as rows become older the adaptive estimate is defined
as

Sλ(t) =

∑t
s=1 λ

t−seseTs∑t
s=1 λ

t−s , (7.3)

where 0 < λ < 1. Since limt→∞
∑t

s=1 λ
t−s = 1/(1 − λ), when t is sufficiently large

(λt−1 ≈ 0) it holds that

Sλ(t) = (1− λ)
(
ete

T
t + λSλ(t− 1)

)
. (7.4)

This recursion can be used to adaptively estimate Σ. At time t the latest estimate
of Σ is Sλ(t− K) and hence et can be simulated as a zero mean multivariate normal
variable with covariance matrix Sλ(t − K). It is noted that the matrix is symmetric
and hence contains K(K + 1)/2 covariance parameters. It is possible to update some
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elements of the matrix before others, in practice this possibility should be considered.
However, there might be some problems with the non-negative definiteness of S.

7.2 Efficient computations

As indicated in Section 5.2 the deterministic scheduling problem can be solved using
5-10 CPU seconds on a 1 GHz PC. When solving a limited number of optimization
problems, corresponding to different paths of the future heat demand, this does not
pose a problem. However, for solving the optimization problem for a number of simu-
lated heat demands the amount of CPU time used might pose a problem since it will
be hard to justify conclusions regarding 5% and 95% quantiles on less that 100 simu-
lations; this will take more than eight minutes, assuming only one CPU is available.
Since the optimization problems can be solved independently it makes sense to use a
multiprocessor computer. However, a number of techniques can be used to reduce the
total amount of CPU time necessary.

For the discrete dynamic programming problem the amount of CPU time used is dom-
inated by the number of combinations which must be investigated. Hence the CPU
time is approximately proportional to

Kngna, (7.5)

where K is the number of time periods as in (4.18), ng is the number of state levels
investigated for the gas turbine (ng = 2 when considering only on/off schedules), and
na is the number of levels originating from the discretization of the amount of heat
in the heat storage (for steps of 9.9 MWh; na = 55). For the optimization problems
considered in Chapter 5 K = 336. In the following we consider how to reduce K and
na.

The number of time periods K can be reduced by reformulating (4.18) so that the
size of the time step ∆t varies over the total time period considered in the optimiza-
tion problem. Consider a time period starting at time t and consisting of time steps
∆t1,∆t2, . . . ,∆tK , so that the optimization period ends at time t +

∑K
k=1 ∆tk. Let

∆Tk =
k∑

l=1

∆tl, (7.6)

if the time intervals are selected so that the functions describing the revenue is constant
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during the intervals, then (4.18) can be reformulated as:

max

K∑

k=1

rt+∆Tk(Fg,t+∆Tk , Fg,t+∆Tk−1
) + c

(a)
t+∆TK

At+∆TK (7.7)

w.r.t.
At+∆Tk = (1− ηa∆tk)At+∆Tk−1

+ ∆tk (H(Fg,t+∆Tk)−Dt+∆Tk)
At+∆Tk ∈ [0, Amax]
Fg,t+∆Tk ∈ {0, fg}

Except for the content of the heat storage At+∆Tk , variables and functions indexed by
t + ∆Tk are constant during the time interval from t + ∆Tk−1 to t + ∆Tk. A similar
formulation can be used for the optimization problem considered in Chapter 6.

It makes sense to base the selection of ∆t1,∆t2, . . . ,∆tK on the time-varying revenue
from selling power, cf. Table 4.1. For Sønderborg Kraftvarmeværk, it does not seem
reasonable to allow the gas turbine to change its state during peak load periods. If the
remaining periods of different revenue are split into time steps of maximum one hour
then a full week is split in 148 time steps, corresponding to a 56% reduction in K and
approximately the same in the amount of CPU time required.

The heat demand Dt+∆Tk is the average for the time interval. If the actual heat
demand is constant during the time interval then the content of the heat storage will
change linearly during the time interval. However, when the actual heat demand is
not constant, the content of the heat storage between t + ∆Tk−1 and t + ∆Tk is not
controlled. Therefore for large time intervals and strongly varying heat demand it is
possible the a schedule found by solving (7.7) could in fact be infeasible in practice.
This can however be compensated for by introducing small superficial bounds on the
content of the heat storage.

The number of levels originating from the discretization of the amount of heat in the
heat storage na can be reduced by not using the same step size for all levels of the
heat stored. For simulation purposes it is suggested that one solution, corresponding
to the forecasted heat demand, is found using the same step size for all levels of the
heat storage. Hereafter, for the simulated heat demands the original discretization is
used around the optimal content of the heat storage and a larger discretization is used
further away from optimum. Using the original discretization for a band corresponding
to half the heat capacity and two times the original discretization for the remaining
levels results in a reduction in na of at least 25%.

If both ways of reducing the CPU time required is implemented, using the values used
above, then the total number of combinations which must be investigated is reduced
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to:
(1− 0.56)Kng(1− 0.25)na = 0.33Kngna,

corresponding to a reduction of 67%. Consequently, using the techniques outlined
above, it is expected that 100 simulations can be performed using less than 3 minutes
on a 1 GHz PC, and less on a multiprocessor machine. Furthermore, as stated in
Section 5.2, we also believe that it is possible to make the basic implementation more
efficient.



Chapter 8

Conclusion and discussion

In this report load scheduling for decentralized combined heat and power plants are
considered for the case where the fuel cost and the revenue from selling power to
the transmission company may be time-varying. These plants use a district heating
network as their main source of cooling and hence the ratio between the heat and power
outputs are fixed by the operating conditions of the plant. To be able to deviate from
this restriction a heat storage facility is often used. The load scheduling is performed
in order to decide the load of each unit, whereby the charging or discharging of the
heat storage is given by the heat demand.

When deciding on a load schedule only approximate knowledge about the future is
available. At the present in Denmark, this uncertainty is only associated with the heat
demand, but in the future revenues and costs might also be uncertain. The approach
taken in this report is to explicitly describe how the total revenue from running the
plant depends on the schedule for the heat and power producing units of the plant
and on external information such as heat demand, costs, and revenues. Optimization
theory, in this case dynamic programming, is then used to find an optimal schedule.
However, in order to do so either (a) the external information must be assumed known
or (b) a mathematical description of the uncertainty must be build into the optimization
problem, which will then aim at maximizing the expected revenue. For (a) the optimal
schedule is conditional on the external information which may not be known exactly
as it is the case for the heat demand. In principle this will be solved using method (b),
but other complications arise in this case. These complications includes, complexity
of the mathematical formulation, non-modular software, and the computational time
required. For this reason we base the approach on (a), but (b) is further discussed near
the end of this chapter.
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To circumvent the problems inherently associated with (a) it is suggested that the plant
is equipped with

(i) an automatic on-line system for forecasting the heat demand,

(ii) an interactive decision support tool by which optimal schedules can be found
given the forecasts or user-defined modifications of the forecasts, and

(iii) an automatic on-line system for monitoring when conditions have changed so
much that the schedule needs revision.

In this report the focus is on methods applicable for items (ii) and (iii), whereas methods
for predicting the heat demand is considered in (Nielsen & Madsen 2000). To take
the uncertainties into account we suggest that the decision support system allows the
operator to investigate the sensitivity of the optimal schedule to variations in the input.
Furthermore, we suggest that the system is equipped with the possibility to simulate
realistic realizations of the heat demand based on the actual forecast and previous
forecast errors, cf. Section 7.1. By letting the system find optimal schedules for each
of these realizations the operator can gain some insight into the importance of the
uncertainties. Of cause not all of (i) – (iii) need to be present for the operator to gain
some insight into which schedules are adequate.

In the report it is shown that for a particular decentralized combined heat and power
plant, Sønderborg Kraftvarmeværk in Denmark, the calculations can be performed
within 5 to 10 seconds, when considering one-week periods. And it is argued that by
using a more efficient formulation schedules for 100 possible realizations of the future
heat demand one week ahead can be found in less than 3 minutes. Furthermore, we
believe that the calculations can be done faster by using a more dedicated implemen-
tation than the one used in this report. Finally, the methods considered allows for
massive use of parallel processing.

When including a description of the uncertainties into the mathematical formulation,
the complexity of the formulation originates from the fact that appropriate forecasting
methods will

• use meteorological forecasts of climate variables,

• calibrate models individually for each forecast-horizon, and

• use self-tuning methods.
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See also (Nielsen & Madsen 2000). Especially, the two first items complicate the
inclusion of the uncertainties into the mathematical formulation, since none of the
models used actually describe the stochastic properties of the prediction errors of the
heat demand. Assuming the above could be solved, a tight link between the system for
predicting the heat demand and the system for load scheduling would be introduced.
This may be undesirable from a practical point of view since the software for load
scheduling and forecasting cannot be separated into modules which can be maintained
separately. Finally, we believe that the complexity of the stochastic process will require
a relatively high dimension of the state vector whereby it will be very time consuming
to perform the computations and methods like the ones considered by Chen et al.
(1999) will be required. However, since the solution to the stochastic problem takes all
future realizations of the stochastic process in to account, the computational time is
maybe not so critical. This is because the problem needs only to be solved when the
properties of the stochastic process changes or when the actual time gets near to the
end of the optimization horizon. In practice this will probably require the stochastic
scheduling problem to be solved, say, twice every week.

Further research is needed to clarify if stochastic optimization can be applied. One
possible path of this research is to use a multivariate normal distribution of the pre-
diction errors as described in Section 7.1. Especially, if the covariance matrix of the
prediction errors can be described using only a few parameters this might be a feasible
path of future research.
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