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1 Introduction

This report will discuss probabilistic forecast of wind-power production. The
focus will be how different meteorological forecasts can be combined into a
prediction of the distribution of future wind-power production. The com-
bined forecasts are constructed as described in [8], the basic model is

pc = w0 +

J
∑

j=1

wjpj, (1)

where
∑J

j=1
wj = 1 and pj is the predicted power based on forecast j. The

weights wj are based on the correlation structure between the pj’s. The
scope of this report is to examine the residuals from the combined forecast
to give a probabilistic characterization of these residuals. The methodology
will be quantile regression as presented by Koenker in [2], and the time-
adaptive method presented in [5], [6] and [7].

Section 2 gives a short presentation of quantile regression and how non-
linear relations can be modelled in a linear quantile regression setting. Sec-
tion 3 presents the data used in the analysis. An evaluation of probabilistic
models is somewhat more complicated than the evaluation of point fore-
casts. The performance of quantile models is therefore discussed in Section
4. Section 5 presents some static models for the combined forecast. Finally
Section 6 presents some time-adaptive quantile regression models.

2 Quantile Regression

The quantile regression models presented in [2] are linear regression models.
If τ denotes a quantile, then given a vector of explanatory variables xt the
regression quantile is

Qτ (xt) = xT
t β. (2)

The asymmetrical and piecewise linear loss function for quantile regression
is defined as

ρτ (r) =

{

τr for r ≥ 0
(τ − 1)r for r < 0,

(3)
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with rt = Qτ (xt) − yt, minimizing the sum of the rt’s gives the τ quantile.
The estimate β̂ of β given N observations is

β̂ = argmin
β

N
∑

i=1

ρτ (ri). (4)

In this presentation the regressors are (functions of) meteorological fore-
casts, horizons and the weights defined above. The focus will be on the 25%
and 75% quantile, but quantile regression can be performed for any quantile
in question.

2.1 Non-Linear Relations with Linear Regression

Quantiles of the residuals as functions of forecasted wind-power are not
expected to be linear functions (see [4]). To apply the setting of linear
quantile regression, these unknown functions are approximated by linear
combinations of spline basis functions (see e.g. [1]). These are further
combined in an additive model, such that the model structure becomes

Q̂τ (x1, ..., xK) = α̂(τ) +

K
∑

j=1

f̂j(xj), (5)

where the functions f̂j are either linear combinations of natural spline basis
functions or linear functions, and xj is the explanatory variables. The func-

tions must be fixed somehow (e.g. by f̂j(0) = 0) to ensure uniqueness of the
parameters in the model. This is done by forcing all spline basis functions to
be zero at the left-most boundary knot. The term α̂ is the common intercept
for the combined model.

As mentioned above, the functions fj are approximated by linear com-
binations of spline basis functions

f̂j(xj) =

nj
∑

l=1

bj,l(xj)β̂j,l, (6)

where bj,l is spline basis function number l for the explanatory variable xj

and β̂j,l is the coefficient to be estimated. With this Q̂ is a linear model in
the bj,l’s. In addition to the linear regression, we will present some results

from time-adaptive quantile regression, i.e. models where β̂j,l is replaced by

β̂j,l,t.
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3 The Data

The data set consists of hourly measurements of power production from Klim
wind-power plant, the predicted power from WPPT (see [3] and [4]) based on
three different weather forecasting systems, and the combined forecast. The
prediction horizons are between 1 and 24 hours. There are 7272 data points
in the data set, spanning the period from February 2nd 2003 to December
12th 2003. For the analysis of the static models the dataset is divided into
two parts, a training set and a test set of approximately equal size. The
training set has 3648 data points and spans the period from February 2nd
2003 to July 4th 2003. The test set is the remaining data points.

The explanatory variables in the data set are the horizon, the combined
forecast and the three different forecasts used by the combined forecast. The
forecasts based on different meteorological data are highly correlated and of
course these are also correlated with the combined forecast. The objective
is to model the uncertainty as a function the combined forecast and some
function of the three individual forecasts. The explanatory variables are
denoted by

hor: The prediction horizon from the meteorological data

pc: The combined forecast based on the three different meteorological fore-
casts - see (1)

pDWD: Predicted power based on the meteorological forecast from “Deutscher
Wetterdienst”

pHIR: Predicted power based on the meteorological forecast from “DMI-
HIRLAM”

pMM5: Predicted power based on the meteorological forecast from “MM5”

4 The Performance of Quantiles

The problem of providing performance measures for quantiles is not easy
and there does not exist any generally accepted measure of the performance
of quantiles. In the following a number of different performance measures
is presented. These performance measures are discussed in [9] and [5]. The
performance measures presented here should all be considered on a test set.
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4.1 Reliability

The reliability is simply the relative number of observations below the quan-
tile curve. The reliability of a good model is close to the required probability,
but it is not clear what “close” means in absolute terms. [9] presents dif-
ferent measures of quantiles and suggests that reliability should always be
considered before any other performance is considered.

4.2 Skill Score

The objective function for quantile regression is also a performance parame-
ter that will be considered. As shown in [9] show that this is actually a skill
score. The loss function for a quantile is the skill score for this quantile and
the sum of two symmetric (around 50%) quantiles is a skill score for this
interval. The skill score for an interval gives one number and is therefore
practical for comparing different models. This number should be small.

4.3 Reliability Distance and Local Reliability

In addition to reliability, the reliability distance dq(xj ; τ) = d(q(y; τ, w))
as defined in [5] will also be considered. w is a smoothing parameter and
will be set to 0.1 in the presentation. Reliability distance is a performance
parameter based on local reliability, also defined in [5]. The reliability dis-
tance basically measures the distance between reliability as a function of
some variable and the required reliability. Reliability distance is one num-
ber while local reliability is a function (see Figures 7 and 8). The reliability
distance is considered for the combined forecast, the prediction horizon, and
time; In the report it is considered as dq(xj)

2 = dq(xj, 0.25)
2 +dq(xj , 0.75)

2.

4.4 Crossings

Quantiles are fitted individually and crossings between quantile curves can
(and will) therefore occur. The number of crossings (

∑

I(IQR < 0), with
IQR=Inter Quantile Range, i.e IQR = Q0.75 −Q0.25) on the test set is con-
sidered as a performance parameter. In addition the mean (E(IQR|IQR <

0)) and maximum size min(IQR) of these crossings is considered. These
numbers should be as small as possible.
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4.5 Sharpness

Sharpness is a measure that tells how far quantiles are separated, and given
that other performance parameters are acceptable, this should be small.
Two different measures are used here, namely the mean of IQR and the me-
dian (Ẽ) of IQR. Undesirable crossings will contribute positively to sharp-
ness, and therefore only IRQ’s larger than zero are considered for sharpness.

4.6 Resolution

Resolution measures how well a model distinguishes between different situ-
ations. This is given by measures that award variation in IQR. Here, two
measures are used, namely the standard deviation of IQR and the Median
Absolute Deviation (MAD), i.e. the median of the absolute deviation from
the median, multiplied by 1.44826 for normal consistency. Only IQR’s larger
than zero are considered.

5 Static Quantile Models

The assumption is that the combined forecast is the most important ex-
planatory variable. In addition we will examine how the forecasts which
form the combined forecast can contribute to the model. When compar-
ing models in this study, the skill score for the interval will be considered
the most important performance parameter, but as the discussion about
the performance of quantiles has yet to be resolved, we will present other
performance parameters as well.

5.1 Models with a Risk Index

As a first hypothesis the quantiles are modeled as

Qτ (pc, rm, hor) = α(τ) + f1(pc) + f2(rm) + f3(hor), (7)

where rm is a risk index defined as

r2

m =
1

3

3
∑

i=j

(pj − p)2, (8)

6



Risk index

rm
2

F
re

qu
en

cy

0 2000 4000 6000 8000

0
20

0
40

0
60

0
80

0
10

00
Combined forecasts

pc

F
re

qu
en

cy

0 5000 10000 15000 20000

0
20

0
40

0
60

0

Figure 1: The figure shows histograms of the combined forecast and the risk
index calculated by (8). Notice that there are very few observations with
high values of the risk index.

and the pj’s are the three forecasts described above. Figure 1 shows his-
tograms of the combined forecast and the risk index defined above. The
figure illustrates that there are very few observations with high values of the
risk index. This means that the model is expected to perform poorly in this
region.

Figure 2 top row shows the model defined in (7) with 10 degrees of
freedom in each direction. The knots for the spline basis functions are
placed at 10% quantiles of observed data, and are marked with the rugs on
the first axis. The function in the direction of the combined forecast behaves
as expected, with large uncertainties for moderate values of predicted power,
and smaller uncertainties for small or very large values of predicted power.
The curves in the direction of the risk index show large distance between the
two quantiles for large values of risk index. This is what would be expected,
but the curves only vary in areas where there are very few data and the
quality of the estimates is questionable in this region. The horizon does not
seem to explain any variation in the data and will not be considered further.

Table 1 gives the performance of five different models based on the com-
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Figure 2: The figure shows the effects of different components on some of
the additive models presented in Table 1.

8



bined forecast and the risk index defined in (8). Three of these are displayed
in Figure 2. The two bottom rows in Figure 2 show models without horizon
and with only 5 knots in the direction of the combined forecast. The curve
in the direction of the combined forecast shows the same qualitative behav-
ior as with 10 knots. The most significant difference is that the difference
between the quantiles is much larger for large forecasted power. This is most
likely due to the small number of data points in this region.

The curve in the direction of the risk index behaves quite differently
when there are 5 knots instead of 10. For large values of the risk index, this
is again due to few data points and the curves should not be trusted in this
region. When the risk index is fitted with a linear function, it still shows
some dependence, even though this is weak. Table 1 shows that this model
(Model 4) gives the best performance in terms of the interval skill score.
However, it also shows that the improvement in performance is very small
compared to a model with only the combined forecast included. Note also
that Model 4 is the only model that performs better than a model without
any risk included.

The risk index defined above uses the sqared deviation from the average
as the risk factor. Another measure is based on the deviation from the
combined forecast. This is calculated by replacing p̄ with pc in (8). The
result of this is given in Table 2, while Models 8 and 9 are such models.
Further the table gives the result of defining the risk index as the absolute
deviation between pDWD and pHIR. The last index is examined because
the weather forecasts from MM5 and HIRLAM are known to be highly
correlated. The hypothesis is therefore that the deviation between one of
these and pDWD alone can explain the uncertainty.

Table 2 shows that the risk index obtained from the deviation from
the combined forecast performs better than that obtained with the mean
of the forecasts. However an improvement is not seen for all performance
parameters. The overall reliability is quite poor for the 25% quantile in all
models, while it performs better for the 75% quantile.

The risk index considered so far does not use the fact that the weight
changes in time. Therefore it is tested in the following wheter time variation
of the weights should be included. The weights sum to one, as they should.
They are, however, not all positive. To ensure that the risk index is greater
than zero, the risk index is defined such that the weights used for the risk
index are proportional to the absolute size of the weights and that they sum
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Model 1 2 3 4 5

df hor 10 0 0 0 0
df pc 10 10 5 5 5
df rm 10 10 5 1 0

Below 25% 20.7 20.6 21.8 21.4 21.6
Below 75% 73.5 73.6 73.3 74.2 73.6
Between 25% and 75% 53.3 53.5 52.4 54.0 52.5

ρ̄0.25(r) 458.6 458.6 454.9 455.0 455.0
ρ̄0.75(r) 556.8 557.6 557.9 556.4 557.0
ρ̄0.25(r) + ρ̄0.75(r) 1015.4 1016.1 1012.8 1011.4 1011.6

dq(pc) 0.068 0.068 0.070 0.065 0.069
dq(hor) 0.042 0.042 0.037 0.039 0.038
dq(t) 0.037 0.037 0.033 0.036 0.035
∑

I(IQR < 0) 42 24 75 53 71
min(IQR) -9.2 -1.4 -6.4 -8.2 -1.2

E(IQR|IQR < 0) -1.4 -0.1 -1.6 -3.5 -0.9

E(IQR|IQR > 0) 2317.9 2314.0 2334.2 2324.8 2333.0

Ẽ(IQR|IQR > 0) 2099.0 2093.3 2230.3 2220.8 2226.5
SD(IQR|IQR > 0) 1869.0 1889.8 1801.8 1800.6 1800.2
MAD(IQR|IQR > 0) 2196.5 2249.6 2520.7 2493.9 2505.6

Table 1: The tables show different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.
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Model 6 7 8 9

df pc 5 5 5 5
df rDH 5 1 0 0
df rc 0 0 5 1

Below 25% 22.0 20.5 21.5 20.6
Below 75% 73.5 73.8 72.1 74.4

Between 25% and 75% 51.8 53.3 50.5 54.6

ρ̄0.25(r) 455.6 454.9 455.3 455.0
ρ̄0.75(r) 558.6 557.2 555.3 555.8
ρ̄0.25(r) + ρ̄0.75(r) 1014.2 1012.1 1010.6 1010.8

dq(pc) 0.062 0.068 0.070 0.064
dq(hor) 0.034 0.043 0.044 0.043
dq(t) 0.029 0.041 0.037 0.040
∑

I(IQR < 0) 67 48 98 34

min(IQR) -2.7 -61.9 -16.9 -5.0
E(IQR|IQR < 0) -1.2 -6.6 -7.1 -2.7

E(IQR|IQR > 0) 2334.2 2314.4 2353.2 2303.3

Ẽ(IQR|IQR > 0) 2241.2 2192.9 2222.4 2198.3
SD(IQR|IQR > 0) 1786.7 1803.5 1814.7 1796.7
MAD(IQR|IQR > 0) 2495.5 2489.1 2488.5 2493.9

Table 2: The table shows different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.
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Model 10 11 12 13

df pc 5 5 5 5
df rc,w 5 1 0 0
df rm,w 0 0 5 1

Below 25% 21.8 21.4 22.2 20.9
Below 75% 71.9 75.0 73.3 74.6
Between 25% and 75% 50.8 54.3 52.1 54.6

ρ̄0.25(r) 456.2 455.0 455.4 455.0

ρ̄0.75(r) 557.5 555.6 557.2 556.5
ρ̄0.25(r) + ρ̄0.75(r) 1013.7 1010.5 1012.6 1011.5

dq(pc) 0.080 0.065 0.074 0.064

dq(hor) 0.045 0.037 0.036 0.042
dq(t) 0.038 0.036 0.030 0.038
∑

I(IQR < 0) 123 31 79 40
min(IQR) -24.4 -13.3 -14.4 -11.3

E(IQR|IQR < 0) -11.4 -6.4 -2.7 -5.1

E(IQR|IQR > 0) 2368.9 2310.2 2350.8 2317.3

Ẽ(IQR|IQR > 0) 2242.9 2171.7 2215.4 2199.5
SD(IQR|IQR > 0) 1823.2 1796.2 1843.4 1807.4
MAD(IQR|IQR > 0) 2454.4 2450.3 2467.9 2492.3

Table 3: The table shows different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.

to one. This is ensured with the following construction

r2

m,w =

J
∑

j=1

|wj |
∑J

j=1
|wj |

(pj − p̄)2. (9)

A risk index rc,w based on the combined forecast is also constructed, and
the result of this is given in Table 3. The result is quite similar to what has
been seen so far. There is a small improvement for Model 11, which uses the
weighted risk index with the combined forecast. The risk indices considered
so far do not seem to give significant improvements compared to a model
with only the combined forecast included.
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5.2 Other Models

The approach with a risk index did not seem to produce significant im-
provements compared to models with only the combined forecast included.
Models that take the individual forecasts into account are therefore tested
in this section.

The first approach is to set up models with the forecasts included as non-
linear functions. Table 4 gives the results for combinations of this, and all
models have the combined forecast included. The table shows large improve-
ments for some of the models, especially Model 20 where all the forecasts are
included. The forecasts and the combined forecast are connected through
(1). Therefore a model that includes all the forecasts might be expected to
be too correlated to facilitate a good estimation. This is partly supported by
Figure 3 where the change in the function for the combined forecast seems
to be compensated for by the three other functions.

The models do not break down completely because the nonlinear func-
tions created by the spline basis functions are defined by the knots, which
depends on the observations, and furthermore the weights change over time.
If the functions had been linear and the weights constant, then the esti-
mation of Model 20 would not have been possible. In conclusion the per-
formance parameters support Model 20, while Figure 3 suggests that the
components are too correlated. The result from Model 20 does, however,
support the hypothesis that the forecasts based on different meteorological
forecasts contain information on the uncertainty of the combined forecast.

The uncertainty is expected to depend on some kind of deviation be-
tween the forecasts. The next step is to let the functions depend on such
differences. Models which use the differences between the forecasts and the
combined forecast are therefore considered.

Performance parameters for models of this type are given in Table 5. The
functions are assumed to be linear. Model 27 performs very well, at least in
terms of interval skill score. Figure 4 shows the components of some of the
models from Table 5, and it is seen that there are clear trends. However,
these are not as we would expect since we have forced a linear function
through and we would expect large differences between quantiles for large
absolute numbers of the differences. It is also noted that there are large
crossings in the plots, but these are not seen in the performance parameter.
Again that there are very few observations in these regions of the data.
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Model 14 15 16 17 18 19 20

df pc 5 5 5 5 5 5 5
df pDWD 5 0 0 5 5 0 5
df pHIR 0 5 0 5 0 5 5
df pMM5 0 0 5 0 5 5 5

Below 25% 22.7 22.6 22.6 23.6 24.3 23.6 25.0

Below 75% 74.2 77.2 73.3 77.3 74.6 76.8 76.9
Between 25% and 75% 51.9 55.4 52.5 54.2 51.3 54.1 52.8

ρ̄0.25(r) 452.8 455.0 458.4 452.5 455.8 455.9 453.4
ρ̄0.75(r) 554.8 560.1 558.8 551.1 555.5 557.7 545.2

ρ̄0.25(r) + ρ̄0.75(r) 1007.6 1015.1 1017.1 1003.6 1011.3 1013.7 998.6

dq(pc) 0.062 0.060 0.069 0.058 0.052 0.054 0.052

dq(hor) 0.031 0.035 0.026 0.032 0.016 0.024 0.024
dq(t) 0.028 0.031 0.030 0.028 0.028 0.025 0.030
∑

I(IQR < 0) 55 36 95 32 65 40 38
min(IQR) -5.0 -3.7 -12.8 -5.7 -13.6 -14.0 -13.5
E(IQR|IQR < 0) -2.8 -2.3 -6.4 -3.5 -4.3 -5.6 -4.7

E(IQR|IQR > 0) 2295.2 2417.8 2335.1 2374.3 2278.4 2379.7 2361.4

Ẽ(IQR|IQR > 0) 2177.4 2286.1 2192.1 2268.5 2161.4 2234.4 2237.5
SD(IQR|IQR > 0) 1779.8 1887.8 1803.9 1808.8 1737.2 1858.9 1753.2
MAD(IQR|IQR > 0) 2352.7 2461.2 2320.3 2363.3 2251.0 2276.8 2267.6

Table 4: The table shows different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.
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Model 21 22 23 24 25 26 27

df pc 5 5 5 5 5 5 5
df pc − pDWD 1 0 0 1 1 0 1
df pc − pHIR 0 1 0 1 0 1 1
df pc − pMM5 0 0 1 0 1 1 1

Below 25% 24.4 29.2 22.6 29.1 25.7 28.6 29.2
Below 75% 75.4 77.4 74.2 77.7 76.5 77.8 78.3
Between 25% and 75% 51.0 48.2 51.6 48.7 50.8 49.2 49.1

ρ̄0.25(r) 455.0 454.8 454.9 454.3 454.1 454.5 452.8

ρ̄0.75(r) 557.0 557.1 549.3 552.5 549.1 549.7 541.8

ρ̄0.25(r) + ρ̄0.75(r) 1013.0 1011.8 1004.2 1006.8 1003.3 1009.4 994.8

dq(pc) 0.063 0.094 0.063 0.091 0.064 0.087 0.084
dq(hor) 0.023 0.044 0.028 0.043 0.030 0.042 0.047
dq(t) 0.025 0.041 0.030 0.041 0.038 0.040 0.049
∑

I(IQR < 0) 34 27 51 20 15 20 13

min(IQR) -9.4 -3.2 -3.2 -11.3 -6.5 -7.1 -16.7
E(IQR|IQR < 0) -5.3 -2.5 -2.3 -6.2 -4.5 -4.0 -7.4

E(IQR|IQR > 0) 2326.0 2402.8 2278.9 2375.9 2335.3 2392.6 2365.7

Ẽ(IQR|IQR > 0) 2169.8 2197.5 2170.7 2203.1 2153.6 2188.0 2188.2
SD(IQR|IQR > 0) 1804.2 1887.8 1740.5 1837.3 1759.6 1858.6 1748.6
MAD(IQR|IQR > 0) 2431.1 2518.5 2378.4 2467.8 2273.6 2441.0 2281.3

Table 5: The table shows different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.
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Figure 5: The figure shows the effects of different components of some of
the additive models presented in Table 6.

The models presented in Table 5 and Figure 4 are now extended to be
nonlinear functions. There are very few observations at high absolute values,
and this results in some quite large crossings. E.g. if the linear functions
given above are replaced with spline basis functions, then the worst case
crossing has a value of -2847. Therefore values in the tail of the distribution
are removed by setting all values above the 95% empirical quantile equal to
the 95% empirical quantile and all values below the 5% empirical quantile
equal to the 5% empirical quantile.

The result of this is given in Table 6 and Figure 5. The table confirms
the point that all three forecasts have to be considered and that we then
get a quite large improvement compared to the models with the risk index.
The performance was better, however, with the linear hypothesis on the
differences.

As has been discussed above, information seems to be reused as the
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Model 28 29 30 31 32 33 34

df pc 5 5 5 5 5 5 5
df pDWD − pc 5 0 0 5 5 0 5
df pHIR − pc 0 5 0 5 0 5 5
df pMM5 − pc 0 0 5 0 5 5 5

Below 25% 22.7 22.8 21.6 25.1 23.5 23.3 25.6
Below 75% 75.1 78.9 74.4 79.0 79.0 79.3 79.9
Between 25% and 75% 52.5 56.1 52.8 54.0 54.8 56.1 54.4

ρ̄0.25(r) 453.8 454.4 454.5 452.3 450.8 453.2 450.3

ρ̄0.75(r) 559.3 559.5 556.6 557.9 559.6 558.9 551.6

ρ̄0.25(r) + ρ̄0.75(r) 1013.1 1013.9 1011.2 1010.3 1010.4 1012.2 1001.9

dq(pc) 0.062 0.070 0.055 0.061 0.050 0.057 0.057
dq(hor) 0.036 0.043 0.031 0.046 0.024 0.040 0.040
dq(t) 0.030 0.036 0.033 0.033 0.031 0.038 0.041
∑

I(IQR < 0) 42 4 47 17 38 17 12
min(IQR) -4.7 -0.28 -24.9 -9.6 -17.7 -19.5 -32.3
E(IQR|IQR < 0) -2.8 -0.26 -8.4 -4.2 -5.2 -8.7 -15.0

E(IQR|IQR > 0) 2311.1 2410.6 2353.2 2424.8 2395.6 2459.6 2425.4

Ẽ(IQR|IQR > 0) 2179.8 2220.9 2191.1 2213.8 2212.4 2332.8 2296.7
SD(IQR|IQR > 0) 1841.1 1847.5 1812.7 1863.0 1860.0 1833.1 1795.3
MAD(IQR|IQR > 0) 2471.0 2434.4 2398.4 2412.9 2378.8 2454.6 2361.6

Table 6: The table shows different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.
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different forecasts are taken into account. A hierarchic structure, where
information used in one level is subtracted in the next level, is therefore
proposed. In schematic terms this is

1 pc p1 p2 p3

2 p1 − pc p2 − pc p3 − pc

3 p2 − p1 p3 − p1

4 p3 − p2,

The idea is now to use one variable from each level. In the first row this is
the combined forecast, in the second row p1 is chosen as the forecast that
gives the best result, etc. Models 28-30 presented in Table 6 give the result
we need to choose p1. This is the forecast based on MM5 (Model 30). The
next rows are chosen in the same way and the results are presented in Figure
6 and Table 7. The performance is about the same for models that include
all forecasts.

It is worth noting that the skill score has improved in the model presented
in Table 7 at the same time as the reliability has moved away from the
required reliability. The same tendency is seen in the reliability distance.
This emphasises the difficulty in measuring the performance of quantiles.

This section has discussed different models for quantiles of combined
forecasts as proposed in [8]. The conclusion is that the individual forecasts
contain information on the uncertainty of these predictions. The analysis
also points to the difficulties of measuring performance of quantiles. Since
there is no single generally accepted method, a number of different perfor-
mance parameters are considered, and these do not always point to the same
model.

Figure 7 shows local reliability for some of the models presented in this
section. The figure shows that at times the overall reliability has very large
local deviation from the required reliability. This is especially clear in the
direction of the combined forecast.

Section 6 will present some of the static models in an adaptive setting.
The models which will be tested in this setting are some of the simple models
and some of the best performing models.
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Model 30 36 37 38

df pc 5 5 5 5
df pMM5 − pc 5 5 5 5
df pDWD − pMM5 0 5 0 0
df pHIR − pMM5 0 0 5 5
df pDWD − pHIR 0 0 0 5

Below 25% 21.6 24.4 22.7 29.7
Below 75% 74.4 76.2 77.7 78.2
Between 25% and 75% 52.8 51.8 55.3 48.5

ρ̄0.25(r) 454.5 453.1 452.3 449.2

ρ̄0.75(r) 556.6 557.8 553.7 550.6

ρ̄0.25(r) + ρ̄0.75(r) 1011.2 1010.9 1006.1 999.8

dq(pc) 0.055 0.054 0.052 0.079
dq(hor) 0.031 0.026 0.029 0.046
dq(t) 0.033 0.034 0.030 0.047
∑

I(IQR < 0) 47 36 43 7

min(IQR) -24.9 -5.0 -52.1 -28.3
E(IQR|IQR < 0) -8.4 -3.0 -16.7 -9.5

E(IQR|IQR > 0) 2353.2 2356.8 2435.9 2308.7

Ẽ(IQR|IQR > 0) 2191.1 2161.4 2236.0 2147.0

SD(IQR|IQR > 0) 1812.7 1806.4 1866.6 1752.5
MAD(IQR|IQR > 0) 2398.4 2317.2 2450.7 2319.2

Table 7: The table shows different performance parameters for different
models. Knots are placed at appropriate quantiles of data. The best per-
former in each row is marked in bold.
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Figure 6: The figure shows the effects of different components of some of
the additive models presented in Table 7.
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Figure 7: The figure shows local reliability in the direction of forecasted
power, horizon and time for some of the models presented in this section.
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6 Time-Adaptive Models

The time-adaptive procedure used here is presented in [5] and [7] where
a description of the algorithms is given along with an analysis of a data
set from Tunø wind power plant. [6] give a technical description of the
algorithms, and finally [7] outline some of the results from [5].

The adaptive method needs an updating procedure. The one chosen
here is the same as used in [5] and [7], where new observations are classified
as belonging to some bin and the oldest observation from this bin are then
removed. The number of observations allowed in each bin is 300 and the
bins are defined by the knots for the spline basis functions in the direction
of the combined forecast.

Tables 8 and 9 present the adaptive version of some of the models pre-
sented in Section 5. The numbering is the same as in Section 5, such that,
e.g. Model 20 becomes Model A20. It is seen that the performance parame-
ters are improved for most of the models. The skill score for the interval has
improved for most of the models, but the skill score for the 25% quantile is
worse for most models, while the 75% quantile has improved for all mod-
els. The conclusion seems to be that models for the 75% quantile should be
adaptive while models for the 25% quantile should not be!

The reliability distance has improved for most of the models and for
most of the variables. The improvements are largest in the direction of the
combined forecast. This point is also illustrated in Figure 8 where the local
reliability is plotted as a function of the combined forecast, horizon and time
for the adaptive versions of the models in Figure 7. by comparing Figure 7
with Figure 8 the improvements are clearly seem.

The performance of the adaptive models is worse with respect to cross-
ings than the static models. For models with many degrees of freedom, the
extreme crossings can be very large for the adaptive models.

Sharpness has improved for all models, while resolution becomes worse
for all models. The relative improvements for sharpness from the static to
the adaptive models are between 5% and 12%. This means that the interval
covering the central 50% of data is smaller, while the reliability and skill
score improved.

For adaptive models the CPU time used for a step forward is also a
performance parameter. Therefore the mean CPU time used for one step
in the models is also given here. Not surprisingly the time increases with
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Model A5 A4 A9 A11 A14 A17 A20
df 6 7 7 7 11 16 21

Below 25% 22.0 22.8 22.0 22.7 25.5 26.0 25.6
Below 75% 73.4 73.1 73.2 73.7 73.5 75.1 73.8
Between 25% and 75% 51.4 50.5 51.5 51.5 49.3 49.5 48.6

Skill 25% 454.4 457.8 457.4 456.1 459.0 461.4 463.2
Skill 75% 546.2 546.0 543.5 544.5 549.0 547.0 543.5

Skill Interval 1000.6 1003.7 1000.9 1000.7 1008.0 1008.4 1006.7

dq pc 0.037 0.038 0.039 0.036 0.030 0.028 0.026

dq hor 0.036 0.034 0.036 0.030 0.032 0.030 0.049
dq t 0.032 0.038 0.040 0.039 0.024 0.020 0.032

sum(IQR< 0) 33 34 52 48 57 44 75
min(IQR) -1.8 -20.5 -47.8 -54.1 -97.2 -17.5 -479.1
mean(IQR< 0) -0.8 -7.7 -14.4 -12.7 -4.2 -4.4 -25.2

mean(IQR) 2158.1 2158.7 2175.7 2168.9 2161.9 2103.6 2083.3

median(IQR) 2110.3 2110.6 2100.6 2114.0 2022.9 1973.4 1897.7

sd(IQR) 1648.9 1639.0 1626.9 1617.5 1614.2 1562.5 1533.3
mad(IQR) 2062.8 2055.3 2037.4 2031.5 2022.9 1930.6 1940.5

Time 25% 0.024 0.036 0.035 0.032 0.112 0.174 0.222
Time 75% 0.017 0.023 0.021 0.021 0.035 0.063 0.130

Table 8: The table shows different performance parameters for adaptive
versions of some of the models presented in section 5. The best performer
in each row is given in bold.

the number of degrees of freedom in the models. It is also worth noting
that the the 25% quantile models are more time consuming than the 75%
quantile models, while the most significant improvements were seen for the
75% quantiles.

7 Conclusion

The conclusion is that input for the combined forecast can be used to explain
some of the uncertainty in the quantile models. It is still not clear, however,
exactly how this should be done. The best performing model is linear in the
differences between the combined forecast and the input forecasts, while the
hypothesis would be that the inter-quartile range should increase with the
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Model A27 A34 A35 A36 A37 A38
df 9 21 11 16 16 21

Below 25% 27.3 25.9 23.8 24.4 26.0 26.4
Below 75% 75.4 74.3 73.2 73.0 73.5 74.0
Between 25% and 75% 48.2 48.7 49.5 48.9 47.7 47.7

Skill 25% 453.2 452.6 456.8 456.3 456.7 452.9
Skill 75% 531.5 538.5 550.9 552.1 549.6 542.9
Skill Interval 984.7 991.1 1007.7 1008.4 1006.2 995.8

dq pc 0.038 0.028 0.030 0.033 0.030 0.029
dq hor 0.051 0.031 0.023 0.023 0.023 0.029
dq t 0.042 0.026 0.029 0.028 0.030 0.032

sum(IQR< 0) 1 70 44 63 47 17
min(IQR) -21.1 -230.5 -626.8 -372.4 -428.7 -243.9
mean(IQR< 0) -21.1 -42.2 -48.8 -34.1 -79.5 -88.0

mean(IQR) 2094.5 2120.1 2173.2 2136.4 2182.8 2084.5

median(IQR) 1909.0 1946.4 2051.2 2026.9 1907.4 1888.5

sd(IQR) 1554.5 1584.7 1657.0 1595.0 1676.0 1587.0
mad(IQR) 1971.7 1977.6 2070.3 1992.6 2098.5 1989.5

Time 25% 0.040 0.216 0.085 0.131 0.097 0.152
Time 75% 0.031 0.159 0.037 0.082 0.078 0.144

Table 9: The table shows different performance parameters for adaptive
versions of some of the models presented in section 5. The best performer
in each row is given in bold.
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Figure 8: The figure shows local reliability in the direction of forecasted
power, horizon and time for some of the adaptive models presented in Table
8 and 9.
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distance from zero. However, it does seem that the input forecasts should
be used individually rather than through the proposed risk indices.

The adaptive method generally gives good results in the performance
parameters. There are big differences however between the two quantiles
examined. The 25% quantile models do not improve and most of the models
get a little worse w.r.t. skill score, while all 75% quantile models improve
by going to an adaptive setting. The reliability measure seems to improve,
but this has only been recorded as one common number for both quantiles,
and it is therefore not clear if there is a difference between the quantiles.
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