LFLM Version 1.0
An S-PLUS / R library for locally weighted
fitting of linear models*

Henrik Aalborg Nielsen®

December 17, 1997

Abstract

The conditional parametric model is an extension of the well
known linear regression model, obtained by replacing the parame-
ters by smooth functions. Estimation in such models may be ac-
complished by fitting a, possibly larger, linear model locally to some
explanatory variable(s). In this report the conditional parametric
model is described together with a method of estimation. An S-
PLUS / R implementation is described and an example given. Since
the user interface is similar to other S-PLUS / R functions for regres-
sion the software is easy to use. Furthermore, to increase speed, the
core of the program is written in the ANSI-C programming language.
The software allows for experimentation with variable bandwidth se-
lection procedures and evaluation structures.

1 Introduction

Conditional parametric models are considered in (Chambers & Hastie 1991),
(Hastie & Tibshirani 1993), and (Anderson, Fang & Olkin 1994). These

*IMM Technical Report number 22-1997 downloaded from http://www.imm.dtu.dk.
Copyright by the author 1997.

TDept. of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyn-
gby, Denmark. E-mail: han@imm.dtu.dk

models may be viewed as linear regression models in which the parameters
are replaced by smooth functions of other explanatory variables. The pur-
pose of the analysis is to estimate and make inference about these functions,
without assuming a parametric form. The models considered in (Chambers
& Hastie 1991) and (Anderson et al. 1994) are rather restricted, since the
originating linear model need to be a strait line or a linear (hyper) surface.
Conditional parametric models are a subset of the varying-coefficient mod-
els described in (Hastie & Tibshirani 1993), but the general description
requires a more complicated estimation procedure.

In Section 2 a general description of the model is given, together with a
method for estimation. In Section 3 an S-PLUS / R library which is able
to estimate the smooth functions is described. An example on how to use
the software is shown in Section 4. In Section 5 details on how to obtain
the source code are given. Finally, in Section 6 we conclude on the paper.

2 Theory

2.1 Model

A conditional parametric model is a model of the form

where the response Y; is a stochastic variable, x; and z; are explanatory
variables, e; is i.i.d. N(0,0?), 0(-) is a vector of unknown but smooth func-
tions with valuesin R, and ¢ = 1,..., N are observation numbers. When x;
is constant across observations the model reduces to a linear model, hereof
the name.

2.2 Local constant estimates

Estimation in (1) aims at estimating the functions 6(-) within the space
spanned by the observations of x;;i = 1,...,N. The functions is only
estimated for distinct values of the argument x. Below & denotes one single
of these points and @(z) denotes the estimates of the coefficient, functions,
when the coefficient functions are evaluated at .

One solution to the estimation problem is to replace 8(x;) in (1) with a
constant vector 8(x) and fit the resulting model locally to x, using weighted
least squares. Below two similar methods of allocating weights to the obser-
vations are described, for both methods the weight function W : Rg — Ro
is a nowhere increasing function. The weight functions available in LFLM
are listed in Table 1 on page 9.

In the case of a spherical kernel the weight on observation i is determined
by the Euclidean distance ||x; — x|| between x; and z, i.e.

wi(x) =W (%) . (2)

A product kernel is characterized by distances being calculated for one
dimension at a time, i.e.

where the multiplication is over the dimensions of . The scalar h(x) > 0
is called the bandwidth. If h(x) is constant for all values of x it is denoted
a fixed bandwidth. If h(x) is chosen so that a certain fraction (a) of
the observations fulfill ||z; — || < h(z) it is denoted a nearest neighbour
bandwidth. If has dimension of two or larger, scaling of the individual
elements of x; before applying the method should be considered, see e.g.
(Cleveland & Devlin 1988). Rotating the coordinate system in which «; is
measured may also be relevant.

Note that if z; = 1 for all i the method of estimation reduces to determining
the scalar 6(x) such that Y . w;(x)(y; — 6(x))? is minimized, i.e. the
method reduces to kernel estimation (Hardle 1990, p. 30). For this reason
the described method of estimation of @(x) in (1) is called kernel or local
constant estimation.

2.3 Local polynomial estimates

If the bandwidth h(zx) is sufficiently small the approximation of 8(-) as a
constant vector near x is good. This implies that a relatively low number
of observations is used to estimate O(x), resulting in a noisy estimate or
large bias if the bandwidth is increased. See also the comments on kernel
estimates in (Anderson et al. 1994)

It is, however, well known that locally to x the elements of 8(-) may be
approximated by polynomials, and in many cases these will be good ap-
proximations for larger bandwidths than those corresponding to local con-
stants. Local polynomial approximations are easily included in the method
described. Let 0;(-) be the j’th element of 8(-) and let P4(x) be a col-
umn vector of terms in a d-order polynomial evaluated at «, if for instance

x = [z1 22]7 then Py(x) = [1 z1 z2 23 z172 23]T. Furthermore, let
zZ; = [Zli e Zpi]T. With
ul = [ZuPdTu)(fBi) 2Py () 2 Py () (4)
and
o T o T AT AT
¢ (x) =[p; ()...9; ()...0, ()], (5)

where é’)j (@) is a column vector of local constant estimates at x correspond-
ing to 2;; Pq(j)(x;), estimation is handled as described in Section 2.2, but
fitting the linear model

Yi=uip(x) +e; i=1,...,N, (6)

locally to . Hereafter the elements of @(x) is estimated by

0;(x) = Pl (@) ;(x); j=1,...p. (7)

When z; =1 for all j this method is identical to the method by Cleveland
& Devlin (1988), with the exception that they center the elements of x;
used in P4(x;) around & and so Py(x;) must be recalculated for each value
of x considered.

Ezample: If the first element of 8(-) is approximated locally by a 2nd order
polynomial and if &; = [21; x2;]7 then 2z;; in (1) is replaced by the elements
Z1i, 21i%1i, Z1iT2i, zllw%z, Z1iT1i%2;, and zllmgl If the corresponding pa-
rameters are denoted ¢1 0, ¢1 1, ¢1 2, ¢1 11, ¢1 12, and ¢1 292 the estimate

of 61 (x) is ¢1 o+ ¢1 121 + 1222 + ¢1 1y + ¢1 122122 + ¢1 223
O

2.4 Heteroschadasity

For estimation purposes only observations in an neighbour-hood of x is
used. Consequently, it is not required that e; has constant variance. It is

4

sufficient that the variance is approximately constant within a neighbour-
hood of z;, i.e. we may write e; is i.i.d. N(0,0%(x;)).

It is possible to extend this to local polynomial estimation of o(x;). How-
ever, it is required that the local approximations used are strictly positive
and it would be obvious to approximate log(c?(x;)). Note that this may
pose problems if the true variance is very small. Furthermore, it is neces-
sary to use a local likelihood method (Hastie & Tibshirani 1990). These
methods are not included in LFLM.

2.5 The smoother matrix

As for linear regression the fitted values §;, ¢ = 1,..., N is linear combina-
tions of the observations y;, ¢ = 1,..., N. If the observations are arranged
in a column vector Y this may be expressed as

Y =LY, (8)

where the n x n matrix L is called the smoother matrix and is indepen-
dent of Y. For linear regression the matrix is often called the hat-matrix
(Jorgensen 1993).

The property (8) is shared with other smoothers (Hastie & Tibshirani 1990)
and hence the model, variance, and error degrees of freedom can be calcu-
lated

dfmoa = tr(L) (9)
dfyar = tr(LLT) (10)
dfer, = N —tr(2L - LL") (11)

For linear regression df,,04, dfvar, and N — dfe,,. are identical due to the
special properties of L in this case.

To see that (8) is true let U be the design matrix corresponding to local
constant estimates, i.e. row 4 is u; from (4). Let W; be a diagonal matrix,
where element (k, k) is the weight on observation k when x; is used as
fitting point, i.e. € = x;. The local constant (intermediate) estimates can
then be expressed as

d(x:) = [UTWiU]_l UTW,Y. (12)

5

Hence the fitted value at observation i equals
. -1
i = uTd(a;) = ul [UTWZ»U} UTw,y. (13)

Consequently, the vector of fitted values can be written as (8). If the
weights are not chosen based on the values of Y or Y then L only depend
onx; and z;,2=1,...,N.

3 Software

The weighted least squares problem, described in Section 2, is solved by the
algorithm described in (Miller 1992). The algorithm was originally written
in Fortran but here a port to C by A. Shah is used. This was obtained as
pub/C-numanal/as274 fc.tar.z by anonymous ftp from usc.edu.

The local constant estimation is implemented as a function written in
ANSI-C. This is also true for most of the calculations related to the smoother
matrix. The remaining part of the program is written in S-PLUS / R.

The S-PLUS / R front end constitutes a user friendly interface which is
described in this section. Some experience with S-PLUS or R is assumed,
including the notion of classes and methods (Statistical Sciences 1993). An
example on how to use the software is given in Section 4.

Below a fixed width font indicates computer terms, e.g. files, S-PLUS / R
objects, and arguments to S-PLUS / R functions. If the string is ended
with “()” this indicates that reference to a S-PLUS / R function is made.

3.1 The main function

The main function of LFLM is 1f1m(). The arguments of this function are
described in this section. Below the term “fitting points” is used to denote
the points in which the estimates are to be calculated (z in Section 2.2).
The handling of weight functions and bandwidth are inspired by the LOC-
FIT program by Clive Loader, Lucent Technologies, Bell Laboratories, see
http://cm.bell-labs.com/stat/project/locfit/index.html.

3.1.1 Required arguments:

The arguments listed below must be supplied to 1£1m().

e formula: Model specification, see Section 3.1.3.

e alpha: The bandwidth to use, by default this is interpreted as a fixed
bandwidth. If a nearest neighbour bandwidth is used alpha specifies
the fraction of observations to be covered for each fitting point. In
this case alpha may have length two, the second element is then taken
as a lower bound on the bandwidth found by the nearest neighbour
method. To allow experimentation with variable-bandwidth selection
procedures, it is also possible to specify an individual bandwidth for
each fitting point. In this case the length of alpha must equal the
number of fitting points, see also the description of argument bt in
Section 3.1.2.

e data: Data frame containing the data.

3.1.2 Optional arguments:

Default values are supplied for the following arguments. These are by no
means guaranteed to be appropriate, especially the bandwidth type bt, the
degree of the local polynomial approximations degree, and the number /
placement of fitting points n.points and x.points should be considered.

e degree: Degree of the local polynomial approximations. If the length
is one this is used for all elements of 8(-). If the length is different
from one it must equal the number of functions to estimate and the
order must correspond to the global part of formula. Default: 2.

e CP: If TRUE crossproduct terms are included in the local polynomial
approximations. As for degree the length must either be one or equal
the number of functions to estimate. Default: TRUE.

e scale: Vector, the length of which correspond to the dimension of .
For each dimension of the fitting points and the corresponding obser-
vations the values are divided by the corresponding element of scale
before distances, and consequently weights, are calculated. Default:
No scaling.

bt: Type of bandwidth; fixed ("£ix"), nearest neighbour ("nn"), or
user specified ("user"), i.e. an individual bandwidth for each fitting
point. If user specified bandwidths are used the argument x.points,
described below, must be supplied. Default: "fix".

kt: Type of kernel; spherical ("sph") or product ("prod"), see Sec-
tion 2.2. Default: "sph".

kern: Type of kernel or weight function; box ("box"), triangle
("tangl"), tricube ("tcub"), or Gaussian ("gauss"), see Table 1.
Default: "tcub".

n.points: Number of fitting points per dimension of the data cor-
responding to the local formula, c.f. Sections 3.1.3 and 3.3. This
argument is disregarded if x.points is specified. Default: 10.

x.points: Data frame containing the fitting points. The names and
order must correspond to the local formula. This argument allows
experimentation with evaluation structures. Default: Constructed
using n.points.

na.action: Function specifying the action to take when missing data
(NA) is found in data, often na.omit is desirable. Default: na.fail.

weight: Vector, which length is the number of observations with no
missing values, specifying the weight on the observations. Default:
unweighted.

calc.df: Should the degrees of freedom of the model be calculated?
In version 1.0 this is possible only when the estimates are calculated
for all observations. Default: FALSE.

save.smoother.matrix: Should the smoother matrix be calculated
and saved? In version 1.0 this is possible only when the estimates are
calculated for all observations. Default: FALSE.

circ: Should the distances be calculated between points on the unit
circle? This argument may only be TRUE for local constant estimates
and for one-dimensional fitting points. Default: FALSE.

dump: Should 1£f1m() dump if an error from the C-code is trapped.
Default: TRUE.

Name kern argument Weight function

1, we|0;1
Box "box" W(u) = { 0 wue h 0)
_.3\3
Tribube "t cub W (u) :{ él w) e Fl)f 2)

Gauss "gauss" W (u) = exp(—u?/2)

Table 1: Weight functions available in LFLM.

3.1.3 Model specification:

Model specification (formula) follows the usual S-PLUS / R formula lan-
guage

<response> ~ (<global formula>) | (<local formula>)

where the global formula is a S-PLUS / R model specification corresponding
to z in (1), and the local formula corresponds to @ in (1). The elements in
the local formula must be separated by asterisks.

Ezample: If x1, x2, z1, z2, and y are numeric vectors (not factors) then
y ~ (z1 +2z2) | (x1 * x2),

specifies the model y; = 0o (1, z2;) + 01 (214, T2i) 21 + 0o (@14, T2i)22; + €;.
As usual the intercept term can be dropped from the model by replacing
z1 + z2 with -1 + z1 + z2.

Note: The function does not handle factor variables and functions of nu-
meric variables included in the global formula correctly. Factor variables
must be replaced by a number of coding variables before using the program.
Similar steps must be used to include functions of numeric variables.

3.1.4 Output:

After successful completion 1f1m() returns a list of class 1flm with the
following components:

call: An image of the call that produced the list.

data.name: Under S-PLUS: The name of the data frame used for
estimation. Under R: the string "unknown"; assign it manually after
the call to 1£1m().

run.time: The date and time at which 1f1m() were called, as re-
turned by date().

formula, degree, CP, circ, kt, kern, bt, alpha, and scale: Copies
from the call to 1£1m().

x.points: Data frame in which the rows are the fitting points used.

est: Data frame in which the rows correspond to the rows in
x.points and the columns correspond to the function estimates.

df: If requested; the degrees of freedom of the model, otherwise: NA.
S: If requested; the smoother matrix, otherwise: NA.

bandwidth: Vector containing the actual bandwidth used for each
fitting point, i.e. the positions correspond to the rows of x.points.

rank.defic: Vector containing non-negative integers indicating the
rank deficiency for each fitting point, as reported by the WLS algo-
rithm. A warning will be issued by 1£f1m() if these are not all zero.

loc.nparam: The number of local constants used, i.e. the number of
parameters estimated by the WLS algorithm.

err.func: If positive one of the C-functions in the WLS algorithm
has returned an error condition. The value can be used to locate the
function in the C code. By default a positive value will cause 1f1m()
to stop without returning a result.

err.val: If err.func is positive; the error value returned by the
function, see (Miller 1992).

10

3.1.5 R notes

As mentioned above the name of the data frame used are not returned
when the software runs under R. To be able to calculate the fitted values
or the residuals, see Section 3.2, the correct name must be assigned to the
list returned by 1f1m(). For instance if the result is saved in the list fit
and the data frame containing the data are called mydata, the command
fit$data.name <- "mydata" must be issued.

Furthermore, when using R (version 0.50), a call to 1£1m() will cause the
warning "some row names are duplicated; argument ignored". This
can safely be disregarded.

3.2 Methods

Methods, corresponding to objects of class 1f1m, are supplied for the func-
tions coef (), fitted (), lines(), plot (), points(), predict (), print (),
residuals (), and summary (). These functions are briefly described below.
Often these functions will be appropriate only for preliminary analyses and
it will often be necessary to write application specific functions. Graphics
are mainly handled for the case of x; in (1) having dimension two or less,
the plot method allows a call to coplot () for higher dimensions.

When ; in (1) has dimension two or more methods using interpolation
(fitted (), predict (), and residuals()) requires the fitting points to be
placed in a grid similar to the grid generated when the argument n.points
is used. However, the grid need not to be rectangular, it is sufficient that
for all i = 1,...,N a (hyper) cube of fitting points containing x; can be
identified.

Below the methods are described.

print () only print some of the components of the object. Since print ()
is called when an object is returned to the top level, or if the name of an
object is just typed at the prompt, unclass () must be used to see the full
content of the object.

summary () returns a list containing the formula, the degrees of freedom (if
calculated), the number of local parameters (length of ¢ in (5)), the degree
and CP arguments from the call to 1£1m (), information of how weights were
constructed, summary information of the estimates (incl. fitting points and

11

bandwidth), and information on whether rank deficiencies were detected.

coef () returns a data frame, in which the first column(s) are the fitting
points, followed by a column containing the bandwidth used (possibly on
the scaled coordinates), the remaining columns contain the estimates of the
functions at the fitting points.

fitted() returns the fitted values of the response. These are calculated
using interpolation between fitting points.

residuals () returns the residuals using fitted().

predict () returns predictions based on the fitted model. Three types
of predictions are available through the type argument; (i) "response"
(default) predictions of the dependent variable, (ii) "terms" each element
of z7'0(x) in (1) separately, and (iii) "coefficients" each element of 8(x)
separately. The calculations are performed using interpolation. By default
missing values are returned if interpolation is not possible, it is possible to
parse arguments to the function carrying out the interpolation.

plot (): By default, when x; in (1) is one dimensional this function plots
all the estimated functions; the user should set up the graphics devise
to contain more than one plot before calling this function. Arguments
can be parsed to the builtin plot function of S-PLUS / R. When «; has
dimension two, and S-PLUS is used, surface plotting using Trellis Graphics
are available, also coplot () may be called. In other cases only coplot()
may be called.

points() / lines() adds points / lines to the current plot, the argument
what is used to specify the estimate to add and therefore should be among
names (coef (obj)), where obj is a list of class 1f1m. These methods are
only implemented for the case where x; in (1) is one dimensional.

In the case that the data frame (data) contain missing values and 1f1m()
is called with argument na.action=na.omit the functions fitted() and
residuals () will return vectors of the same length as the number of rows
in the data frame, but with missing values inserted as appropriate. This
is not consistent with other regression functions in S-PLUS, but we find it
more convenient for general use.

12

3.3 Surface Estimation

When @ in (1) has dimension two or more, using the argument n.points
to 1f1m() will result in a rectangular grid of fitting points being spanned
parallel to the coordinate axes. Often, no observations will be present in
the corners of this grid. In this situation we suggest that the fitting points
are supplied directly through the x.points argument to 1£f1m().

To facilitate this process it is possible to use 1flm.data.grid() to gener-
ate the rectangular grid and in.chull() to delete the fitting points not
inside the convex hull spanned by the observations @1, x2,...,xxy. How-
ever, in.chull () works only when @ has dimension two.

Note: The function in.chull (), supplied together with the software, is not
used by other functions. Therefore, it can safely be deleted or renamed.

4 Example

The ethanol example of (Chambers & Hastie 1991, Section 8.2.2) is used
since this clearly illustrates some of the differences between the standard
S-PLUS function used of locally weighted regression, loess (), and 1f1m().
However, the strength of 1f1m() is mainly when, conditioning on one or
two variables, there are more explanatory variables in the linear model than
here. The example uses data stored in the data frame ethanol included
in S-PLUS. Below “>” indicates the S-PLUS prompt and “+” indicates the
secondary prompt.

The data are from an experiment with a single-cylinder automobile test
engine using ethanol as fuel (Brinkman 1981). The dependent variable
NOx is the amount of nitric oxide and nitrogen dioxide in the exhaust,
normalized by the work done by the engine, and the unit is ug per joule.
There are two predictors (i) the compression ratio C and (ii) the equivalence
ratio E, a measure of the air to fuel ratio. There were 88 runs of the
experiment.

The purpose of the analysis is to estimate the dependence of the expected
value of NOx on C and E, without an a priory assumption of a specific
parametric form. Since the convex hull spanned by the observations of
the predictors is almost rectangular we will use fitting points spanning a
rectangular grid of the predictors. In (Chambers & Hastie 1991, pp. 331-

13

335) it is shown that substantial curvature exists in the direction of the
equivalence ratio E. For this reason a local quadratic approximation seems
appropriate. Using a 50% nearest neighbour bandwidth the surface can be
estimated using the command

> loess(NOx ~ Cx*E, span=0.5, degree=2, data=ethanol)

this will scale the predictors, by dividing them by their 10% trimmed sample
standard deviation (Chambers & Hastie 1991, p. 315). With the exception
of the fitting points used this can also be reproduced by use of 1f1m().
The command

> eth.surf <- 1fIm(NOx ~ (1)|(C+E), bt="nn", alpha=0.5,
+ degree=2, scale=sqrt(c(var(ethanol$C),var(ethanol$E))),
+ data=ethanol, n.points=15)

will scale by the untrimmed sample standard deviations and store the result
as eth.surf. The estimated surface can be viewed by issuing the command

> plot(eth.surf, pt="wireframe", what="Intercept", zlab="N0x")

The plot is displayed in Figure 1. It seems that the “hill” runs parallel
to the direction of the compression ratio C. As a first step we could then
drop the cross-products between C and E by adding the argument CP=F in
the call to 1f1m. However we will go directly to a conditional parametric
model, in which the surface is linear in C, i.e. the expected value of NOx
is modelled as 6y(E) + 6, (E)C, where 8y(-) and 6,(-) are smooth functions.
Such a model is fitted by the command

> eth.cpml <- 1f1m(NOx ~ (1+C)|(E), bt="nn", alpha=0.5,

+ degree=2, data=ethanol, n.points=50)

Since an intercept term is included by default the formula NOx ~ (C) | (E)
will be equivalent. As usual, a model without an intercept can be requested
by replacing 1 with -1. The model just fitted includes third order terms in
the local design matrix used. Hence, to mimic

> loess(NOx ~ C*E, span=0.5, degree=2, parametric="C",

+ drop.square="C", data=ethanol)

which is an example of how a conditional parametric model is specified in
loess() (Chambers & Hastie 1991, p. 344), the command

> eth.cpm2 <- 1f1m(NOx ~ (C)|(E), bt="nn", alpha=0.5,
+ degree=c(2,1), data=ethanol, n.points=50)

14

NOx

Figure 1: Wire-frame plot of intercept in eth.surf.

should be used. The fit eth.cpml and the coefficient corresponding to C in
eth.cpm2 may be plotted by the commands

> par (mfrow=c(1,2))
> plot(eth.cpml, type="1")
> lines(eth.cmp2, what="C", lty=2)

The resulting plots are shown in Figure 2 and as expected eth. cpm?2 results
in more smooth estimates. Printing the bandwidth component of eth. cpm1
or eth.cpm?2 reveals that at the leftmost point the bandwidth spans 56%
of the axis and at the rightmost point the corresponding number is 43%.

Comparing with (Chambers & Hastie 1991, Section 8.2.2) it is seen that the
results are presented quite differently from when loess () are used; loess()
focus on the surface, while 1£1m() focus on the coefficient functions.

A page containing some simple diagnostics is obtained by the commands

15

© S
o
PN
g ©
o o
L © ©
£
o o
o
06 08 10 1.2 06 08 10 12
E E

Figure 2: Estimated coefficient functions from eth.cpml (solid) and the
coefficient function corresponding to C from eth.cpm2 (dotted).

par (mfrow=c(2,2))

plot(fitted(eth.cpm2) ,residuals(eth.cpm2))
qqnorm(residuals (eth.cpm2))
qqline(residuals(eth.cpm2))

plot (ethanol$C,residuals(eth.cpm?2))

plot (ethanol$E,residuals(eth.cpm?2))

V V V V V V

The plots are shown in Figure 3 on page 17. The lower left plot indicates
that the dependence on C is not strictly linear given E. Actually, in this case
an additive model fitted by use of gam() is probably more appropriate, see
(Chambers & Hastie 1991, Section 7.2.5).

To gain some understanding of the uncertainty associated with the esti-
mates, bootstrapping of the residuals can be applied (Efron & Tibshirani
1993). In Appendix A.1 a program which will generate 200 bootstrap repli-
cates of eth.cpm?2 calculated at 30 points of equal distance along the E axis
is shown. The program also calculates pointwise estimates of the mean and
the standard deviation.

The actual bootstrapping (the for-loop) took 141 seconds on a HP 9000/800.
Figure 4 on page 18 shows the 95% standard normal intervals based on the
bootstrap replicates. To interpret these as confidence intervals we need to
assume that the model is correct and estimated without bias. As argued
above this is somewhat doubtful. The plot was generated by the program
shown in Appendix A.2.

16

0.4
0.4

residuals(eth.com2)
0.0
. 53 —
@]
o8
& O
oF
Fo
@] O%
@ @)
residuals(eth.cpm2)
0.0

-0.4
o
-0.4

fitted(eth.cpm2) Quantiles of Standard Normal

O

@]

0.4
@]
o
0.4

o@D O
@@ OO0
@ @O 000

®
@

9@3
o

0.0
e8]
O O o@§
Ooogoo <)
)

@w@

residuals(eth.cpm2)
890

residuals(eth.cpm2)
0.0
OO OOMTHID O

-0.4
-0.4

O O OOOmO@OaD

‘O
8 10 12 14 16 18 06 08 10 12

ethanol$C ethanol$E

Figure 3: Simple diagnostics for the fit corresponding to eth.cpm2.

5 Obtaining the code and installation

The source code is found at http://www.imm.dtu.dk/~han/1flm.tgz

On UNIX systems: Place 1flm.tgz in a temporary directory. Uncom-
press the file by executing gunzip 1flm.tgz and unpack the resulting tape
archive file by executing tar -xvf 1flm.tar. Hereafter; follow the instruc-
tions in the file called README.

The program is known to compile and run under HP-UX 9 and 10, with
S-PLUS 3.4 installed, and under RedHat Linux 4.0 (kernel version 2.0.18)
with R 0.50 installed.

17

Intercept
1

0.0 0.05

06 08 10 12 06 08 10 12

E E

Figure 4: Mean and 95% standard normal intervals based on 200 bootstrap
replicates of eth.cpm2 (dotted), together with the original estimates (solid).

6 Conclusion

The conditional parametric model is reviewed, together with estimation
using locally weighted fitting of a linear model derived from the original
model. Furthermore, a software package for S-PLUS / R is described. The
software can also be used for well known methods like kernel regression and
locally weighted polynomial regression.

Since the user interface is similar to other S-PLUS / R functions for regres-
sion the software is easy to use. Furthermore, to increase speed the core
of the program is written in the ANSI-C programming language. The soft-
ware is flexible enough to allow experimentation with variable bandwidth
selection procedures and evaluation structures. Also, the size of the regres-
sion problem which can be handled is solely determined by the hardware /
operation system configuration.

A Sample S-PLUS programs

A.1 Bootstrapping

The following S-PLUS program was used to generate 200 bootstrap repli-
cates of eth.cpm2 produced by 1f1m() as shown on page 14. The program
also calculates pointwise estimates of the mean and standard deviation.

18

eth.cpm2.resid <- residuals(eth.cpm2)
eth.cpm2.fitted <- fitted(eth.cpm2)
eth.cpm2.boot.1 <- matrix(nrow=30, ncol=200)
eth.cpm2.boot.C <- matrix(nrow=30, ncol=200)
eth.cpm2.boot.E <-
seq(min(ethanol$E) ,max (ethanol$E), length=30)

for(b in 1:200) {
tmp <-
1f1m(NOx ~ (C)|(E), degree=c(2,1), bt="nn", alpha=0.5,
x.points=data.frame(E=eth.cpm2.boot.E),
data=data.frame(C=ethanol$C, E=ethanol$E,
NOx=eth.cpm2.fitted +
sample (eth.cpm2.resid, length(eth.cpm2.resid), T)))
eth.cpm2.boot.1[,b] <- coef(tmp) [, "Intercept"]
eth.cpm2.boot.C[,b] <- coef (tmp)[, "C"]
}

eth.cpm2.summ <- vector("list", 0)
eth.cpm2.summ$Intercept <-
data.frame (mean=apply(eth.cpm2.boot.1, 1, "mean"),
sd=sqrt (apply(eth.cpm2.boot.1, 1, "var")))
eth.cpm2.summ$C <-
data.frame (mean=apply(eth.cpm2.boot.C, 1, "mean"),
sd=sqrt (apply(eth.cpm2.boot.C, 1, "var")))

A.2 Plotting

To produce the plot of the pointwise 95% confidence intervals shown in
Figure 4 on page 18 the following S-PLUS program was used:

par (mfrow=c(1, 2))
for(what in c("Intercept", "C")) {
matplot (eth.cpm2.boot.E,
cbind (gqnorm(p=0.025,
mean=get (what, eth.cpm2.summ)$mean,
sd=get (what, eth.cpm2.summ)$sd),
get (what, eth.cpm2.summ)$mean,
qnorm(p=0.975,

19

mean=get (what, eth.cpm2.summ)$mean,
sd=get (what, eth.cpm2.summ)$sd)),
type="1", lty=2, col=1, xlab="E", ylab=what)
axis(1)
axis(2)
box ()
lines(eth.cpm2, what=what)

References

Anderson, T. W., Fang, K. T. & Olkin, I., eds (1994), Multivariate Analysis
and Its Applications, Institute of Mathematical Statistics, Hayward,
chapter Coplots, Nonparametric Regression, and conditionally Para-
metric Fits, pp. 21-36.

Brinkman, N. D. (1981), ‘Ethanol fuel—a single-cylinder engine study of
efficiency and exhaust emissions’, SAF transactions 90(810345), 1410—
1424.

Chambers, J. M. & Hastie, T. J., eds (1991), Statistical Models in S,
Wadsworth, Belmont, CA.

Cleveland, W. S. & Devlin, S. J. (1988), ‘Locally weighted regression: An
approach to regression analysis by local fitting’, Journal of the Amer-
ican Statistical Association 83, 596-610.

Efron, B. & Tibshirani, R. J. (1993), An Introduction to the Bootstrap,
Chapman & Hall, London/New York.

Hardle, W. (1990), Applied Nonparametric Regression, Cambridge Univer-
sity Press, Cambridge, UK.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman
& Hall, London/New York.

Hastie, T. & Tibshirani, R. (1993), ‘Varying-coefficient models’, Journal of
the Royal Statistical Society, Series B, Methodological 55, 757—-796.

20

Jorgensen, B. (1993), The Theory of Linear Models, Chapman & Hall,
London/New York.

Miller, A. J. (1992), ‘[Algorithm AS 274] Least squares routines to supple-
ment those of Gentleman’, Applied Statistics 41, 458-478. (Correction:
94V43 p678).

Statistical Sciences (1993), S-PLUS Programmer’s Manual, Version 3.2,
StatSci, a division of MathSoft, Inc., Seattle.

21

