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models may be viewed as linear regression models in which the parametersare replaced by smooth functions of other explanatory variables. The pur-pose of the analysis is to estimate and make inference about these functions,without assuming a parametric form. The models considered in (Chambers& Hastie 1991) and (Anderson et al. 1994) are rather restricted, since theoriginating linear model need to be a strait line or a linear (hyper) surface.Conditional parametric models are a subset of the varying-coe�cient mod-els described in (Hastie & Tibshirani 1993), but the general descriptionrequires a more complicated estimation procedure.In Section 2 a general description of the model is given, together with amethod for estimation. In Section 3 an S-PLUS / R library which is ableto estimate the smooth functions is described. An example on how to usethe software is shown in Section 4. In Section 5 details on how to obtainthe source code are given. Finally, in Section 6 we conclude on the paper.2 Theory2.1 ModelA conditional parametric model is a model of the formYi = zTi �(xi) + ei; i = 1; : : : ; N; (1)where the response Yi is a stochastic variable, xi and zi are explanatoryvariables, ei is i.i.d. N(0; �2), �(�) is a vector of unknown but smooth func-tions with values in R, and i = 1; : : : ; N are observation numbers. When xiis constant across observations the model reduces to a linear model, hereofthe name.2.2 Local constant estimatesEstimation in (1) aims at estimating the functions �(�) within the spacespanned by the observations of xi; i = 1; : : : ; N . The functions is onlyestimated for distinct values of the argument x. Below x denotes one singleof these points and �̂(x) denotes the estimates of the coe�cient functions,when the coe�cient functions are evaluated at x.2



One solution to the estimation problem is to replace �(xi) in (1) with aconstant vector �(x) and �t the resulting model locally to x, using weightedleast squares. Below two similar methods of allocating weights to the obser-vations are described, for both methods the weight function W : R0 ! R0is a nowhere increasing function. The weight functions available in LFLMare listed in Table 1 on page 9.In the case of a spherical kernel the weight on observation i is determinedby the Euclidean distance jjxi � xjj between xi and x, i.e.wi(x) = W � jjxi � xjjh(x) � : (2)A product kernel is characterized by distances being calculated for onedimension at a time, i.e.wi(x) =Yj W � jxi(j)� x(j)jh(x) � ; (3)where the multiplication is over the dimensions of x. The scalar h(x) > 0is called the bandwidth. If h(x) is constant for all values of x it is denoteda �xed bandwidth. If h(x) is chosen so that a certain fraction (�) ofthe observations ful�ll jjxi � xjj � h(x) it is denoted a nearest neighbourbandwidth. If x has dimension of two or larger, scaling of the individualelements of xi before applying the method should be considered, see e.g.(Cleveland & Devlin 1988). Rotating the coordinate system in which xi ismeasured may also be relevant.Note that if zi = 1 for all i the method of estimation reduces to determiningthe scalar �̂(x) such that Pni=1 wi(x)(yi � �̂(x))2 is minimized, i.e. themethod reduces to kernel estimation (H�ardle 1990, p. 30). For this reasonthe described method of estimation of �(x) in (1) is called kernel or localconstant estimation.2.3 Local polynomial estimatesIf the bandwidth h(x) is su�ciently small the approximation of �(�) as aconstant vector near x is good. This implies that a relatively low numberof observations is used to estimate �(x), resulting in a noisy estimate orlarge bias if the bandwidth is increased. See also the comments on kernelestimates in (Anderson et al. 1994) 3



It is, however, well known that locally to x the elements of �(�) may beapproximated by polynomials, and in many cases these will be good ap-proximations for larger bandwidths than those corresponding to local con-stants. Local polynomial approximations are easily included in the methoddescribed. Let �j(�) be the j'th element of �(�) and let P d(x) be a col-umn vector of terms in a d-order polynomial evaluated at x, if for instancex = [x1 x2]T then P 2(x) = [1 x1 x2 x21 x1x2 x22]T . Furthermore, letzi = [z1i : : : zpi]T . WithuTi = hz1iP Td(1)(xi) : : : zjiP Td(j)(xi) : : : zpiP Td(p)(xi)i (4)and �̂T (x) = [�̂T1 (x) : : : �̂Tj (x) : : : �̂Tp (x)]; (5)where �̂j(x) is a column vector of local constant estimates at x correspond-ing to zjiP d(j)(xi), estimation is handled as described in Section 2.2, but�tting the linear modelYi = uTi �(x) + ei; i = 1; : : : ; N; (6)locally to x. Hereafter the elements of �(x) is estimated by�̂j(x) = P Td(j)(x) �̂j(x); j = 1; : : : p: (7)When zj = 1 for all j this method is identical to the method by Cleveland& Devlin (1988), with the exception that they center the elements of xiused in P d(xi) around x and so P d(xi) must be recalculated for each valueof x considered.Example: If the �rst element of �(�) is approximated locally by a 2nd orderpolynomial and if xi = [x1i x2i]T then z1i in (1) is replaced by the elementsz1i; z1ix1i; z1ix2i; z1ix21i; z1ix1ix2i; and z1ix22i. If the corresponding pa-rameters are denoted �1;0; �1;1; �1;2; �1;11; �1;12; and �1;22 the estimateof �1(x) is �̂1;0 + �̂1;1x1 + �̂1;2x2 + �̂1;11x21 + �̂1;12x1x2 + �̂1;22x22. 22.4 HeteroschadasityFor estimation purposes only observations in an neighbour-hood of x isused. Consequently, it is not required that ei has constant variance. It is4



su�cient that the variance is approximately constant within a neighbour-hood of xi, i.e. we may write ei is i.i.d. N(0; �2(xi)).It is possible to extend this to local polynomial estimation of �2(xi). How-ever, it is required that the local approximations used are strictly positiveand it would be obvious to approximate log(�2(xi)). Note that this maypose problems if the true variance is very small. Furthermore, it is neces-sary to use a local likelihood method (Hastie & Tibshirani 1990). Thesemethods are not included in LFLM.2.5 The smoother matrixAs for linear regression the �tted values ŷi; i = 1; : : : ; N is linear combina-tions of the observations yi; i = 1; : : : ; N . If the observations are arrangedin a column vector Y this may be expressed asŶ = LY ; (8)where the n � n matrix L is called the smoother matrix and is indepen-dent of Y . For linear regression the matrix is often called the hat-matrix(J�rgensen 1993).The property (8) is shared with other smoothers (Hastie & Tibshirani 1990)and hence the model, variance, and error degrees of freedom can be calcu-lated dfmod = tr(L) (9)dfvar = tr(LLT ) (10)dferr = N � tr(2L�LLT ) (11)For linear regression dfmod, dfvar, and N � dferr are identical due to thespecial properties of L in this case.To see that (8) is true let U be the design matrix corresponding to localconstant estimates, i.e. row i is ui from (4). LetW i be a diagonal matrix,where element (k; k) is the weight on observation k when xi is used as�tting point, i.e. x = xi. The local constant (intermediate) estimates canthen be expressed as�̂(xi) = hUTW iUi�1UTW iY : (12)5



Hence the �tted value at observation i equalsŷi = uTi �̂(xi) = uTi hUTW iUi�1UTW iY : (13)Consequently, the vector of �tted values can be written as (8). If theweights are not chosen based on the values of Y or Ŷ then L only dependon xi and zi, i = 1; : : : ; N .3 SoftwareThe weighted least squares problem, described in Section 2, is solved by thealgorithm described in (Miller 1992). The algorithm was originally writtenin Fortran but here a port to C by A. Shah is used. This was obtained aspub/C-numanal/as274 fc.tar.z by anonymous ftp from usc.edu.The local constant estimation is implemented as a function written inANSI-C. This is also true for most of the calculations related to the smoothermatrix. The remaining part of the program is written in S-PLUS / R.The S-PLUS / R front end constitutes a user friendly interface which isdescribed in this section. Some experience with S-PLUS or R is assumed,including the notion of classes and methods (Statistical Sciences 1993). Anexample on how to use the software is given in Section 4.Below a �xed width font indicates computer terms, e.g. �les, S-PLUS / Robjects, and arguments to S-PLUS / R functions. If the string is endedwith \()" this indicates that reference to a S-PLUS / R function is made.3.1 The main functionThe main function of LFLM is lflm(). The arguments of this function aredescribed in this section. Below the term \�tting points" is used to denotethe points in which the estimates are to be calculated (x in Section 2.2).The handling of weight functions and bandwidth are inspired by the LOC-FIT program by Clive Loader, Lucent Technologies, Bell Laboratories, seehttp://cm.bell-labs.com/stat/project/locfit/index.html.6



3.1.1 Required arguments:The arguments listed below must be supplied to lflm().� formula: Model speci�cation, see Section 3.1.3.� alpha: The bandwidth to use, by default this is interpreted as a �xedbandwidth. If a nearest neighbour bandwidth is used alpha speci�esthe fraction of observations to be covered for each �tting point. Inthis case alphamay have length two, the second element is then takenas a lower bound on the bandwidth found by the nearest neighbourmethod. To allow experimentation with variable-bandwidth selectionprocedures, it is also possible to specify an individual bandwidth foreach �tting point. In this case the length of alpha must equal thenumber of �tting points, see also the description of argument bt inSection 3.1.2.� data: Data frame containing the data.3.1.2 Optional arguments:Default values are supplied for the following arguments. These are by nomeans guaranteed to be appropriate, especially the bandwidth type bt, thedegree of the local polynomial approximations degree, and the number /placement of �tting points n.points and x.points should be considered.� degree: Degree of the local polynomial approximations. If the lengthis one this is used for all elements of �(�). If the length is di�erentfrom one it must equal the number of functions to estimate and theorder must correspond to the global part of formula. Default: 2.� CP: If TRUE crossproduct terms are included in the local polynomialapproximations. As for degree the length must either be one or equalthe number of functions to estimate. Default: TRUE.� scale: Vector, the length of which correspond to the dimension of x.For each dimension of the �tting points and the corresponding obser-vations the values are divided by the corresponding element of scalebefore distances, and consequently weights, are calculated. Default:No scaling. 7



� bt: Type of bandwidth; �xed ("fix"), nearest neighbour ("nn"), oruser speci�ed ("user"), i.e. an individual bandwidth for each �ttingpoint. If user speci�ed bandwidths are used the argument x.points,described below, must be supplied. Default: "fix".� kt: Type of kernel; spherical ("sph") or product ("prod"), see Sec-tion 2.2. Default: "sph".� kern: Type of kernel or weight function; box ("box"), triangle("tangl"), tricube ("tcub"), or Gaussian ("gauss"), see Table 1.Default: "tcub".� n.points: Number of �tting points per dimension of the data cor-responding to the local formula, c.f. Sections 3.1.3 and 3.3. Thisargument is disregarded if x.points is speci�ed. Default: 10.� x.points: Data frame containing the �tting points. The names andorder must correspond to the local formula. This argument allowsexperimentation with evaluation structures. Default: Constructedusing n.points.� na.action: Function specifying the action to take when missing data(NA) is found in data, often na.omit is desirable. Default: na.fail.� weight: Vector, which length is the number of observations with nomissing values, specifying the weight on the observations. Default:unweighted.� calc.df: Should the degrees of freedom of the model be calculated?In version 1.0 this is possible only when the estimates are calculatedfor all observations. Default: FALSE.� save.smoother.matrix: Should the smoother matrix be calculatedand saved? In version 1.0 this is possible only when the estimates arecalculated for all observations. Default: FALSE.� circ: Should the distances be calculated between points on the unitcircle? This argument may only be TRUE for local constant estimatesand for one-dimensional �tting points. Default: FALSE.� dump: Should lflm() dump if an error from the C-code is trapped.Default: TRUE. 8



Name kern argument Weight functionBox "box" W (u) = � 1; u 2 [0; 1)0; u 2 [1;1)Triangle "tangl" W (u) = � 1� u; u 2 [0; 1)0; u 2 [1;1)Tribube "tcub" W (u) = � (1� u3)3; u 2 [0; 1)0; u 2 [1;1)Gauss "gauss" W (u) = exp(�u2=2)Table 1: Weight functions available in LFLM.3.1.3 Model speci�cation:Model speci�cation (formula) follows the usual S-PLUS / R formula lan-guage <response> � (<global formula>) | (<local formula>)where the global formula is a S-PLUS / R model speci�cation correspondingto z in (1), and the local formula corresponds to x in (1). The elements inthe local formula must be separated by asterisks.Example: If x1, x2, z1, z2, and y are numeric vectors (not factors) theny � (z1 + z2) | (x1 * x2);speci�es the model yi = �0(x1i; x2i) + �1(x1i; x2i)z1i + �0(x1i; x2i)z2i + ei.As usual the intercept term can be dropped from the model by replacingz1 + z2 with -1 + z1 + z2.Note: The function does not handle factor variables and functions of nu-meric variables included in the global formula correctly. Factor variablesmust be replaced by a number of coding variables before using the program.Similar steps must be used to include functions of numeric variables.9



3.1.4 Output:After successful completion lflm() returns a list of class lflm with thefollowing components:� call: An image of the call that produced the list.� data.name: Under S-PLUS: The name of the data frame used forestimation. Under R: the string "unknown"; assign it manually afterthe call to lflm().� run.time: The date and time at which lflm() were called, as re-turned by date().� formula, degree, CP, circ, kt, kern, bt, alpha, and scale: Copiesfrom the call to lflm().� x.points: Data frame in which the rows are the �tting points used.� est: Data frame in which the rows correspond to the rows inx.points and the columns correspond to the function estimates.� df: If requested; the degrees of freedom of the model, otherwise: NA.� S: If requested; the smoother matrix, otherwise: NA.� bandwidth: Vector containing the actual bandwidth used for each�tting point, i.e. the positions correspond to the rows of x.points.� rank.defic: Vector containing non-negative integers indicating therank de�ciency for each �tting point, as reported by the WLS algo-rithm. A warning will be issued by lflm() if these are not all zero.� loc.nparam: The number of local constants used, i.e. the number ofparameters estimated by the WLS algorithm.� err.func: If positive one of the C-functions in the WLS algorithmhas returned an error condition. The value can be used to locate thefunction in the C code. By default a positive value will cause lflm()to stop without returning a result.� err.val: If err.func is positive; the error value returned by thefunction, see (Miller 1992). 10



3.1.5 R notesAs mentioned above the name of the data frame used are not returnedwhen the software runs under R. To be able to calculate the �tted valuesor the residuals, see Section 3.2, the correct name must be assigned to thelist returned by lflm(). For instance if the result is saved in the list fitand the data frame containing the data are called mydata, the commandfit$data.name <- "mydata" must be issued.Furthermore, when using R (version 0.50), a call to lflm() will cause thewarning "some row names are duplicated; argument ignored". Thiscan safely be disregarded.3.2 MethodsMethods, corresponding to objects of class lflm, are supplied for the func-tions coef(), fitted(), lines(), plot(), points(), predict(), print(),residuals(), and summary(). These functions are briey described below.Often these functions will be appropriate only for preliminary analyses andit will often be necessary to write application speci�c functions. Graphicsare mainly handled for the case of xi in (1) having dimension two or less,the plot method allows a call to coplot() for higher dimensions.When xi in (1) has dimension two or more methods using interpolation(fitted(), predict(), and residuals()) requires the �tting points to beplaced in a grid similar to the grid generated when the argument n.pointsis used. However, the grid need not to be rectangular, it is su�cient thatfor all i = 1; : : : ; N a (hyper) cube of �tting points containing xi can beidenti�ed.Below the methods are described.print() only print some of the components of the object. Since print()is called when an object is returned to the top level, or if the name of anobject is just typed at the prompt, unclass() must be used to see the fullcontent of the object.summary() returns a list containing the formula, the degrees of freedom (ifcalculated), the number of local parameters (length of � in (5)), the degreeand CP arguments from the call to lflm(), information of how weights wereconstructed, summary information of the estimates (incl. �tting points and11



bandwidth), and information on whether rank de�ciencies were detected.coef() returns a data frame, in which the �rst column(s) are the �ttingpoints, followed by a column containing the bandwidth used (possibly onthe scaled coordinates), the remaining columns contain the estimates of thefunctions at the �tting points.fitted() returns the �tted values of the response. These are calculatedusing interpolation between �tting points.residuals() returns the residuals using fitted().predict() returns predictions based on the �tted model. Three typesof predictions are available through the type argument; (i) "response"(default) predictions of the dependent variable, (ii) "terms" each elementof zT�(x) in (1) separately, and (iii) "coefficients" each element of �(x)separately. The calculations are performed using interpolation. By defaultmissing values are returned if interpolation is not possible, it is possible toparse arguments to the function carrying out the interpolation.plot(): By default, when xi in (1) is one dimensional this function plotsall the estimated functions; the user should set up the graphics deviseto contain more than one plot before calling this function. Argumentscan be parsed to the builtin plot function of S-PLUS / R. When xi hasdimension two, and S-PLUS is used, surface plotting using Trellis Graphicsare available, also coplot() may be called. In other cases only coplot()may be called.points() / lines() adds points / lines to the current plot, the argumentwhat is used to specify the estimate to add and therefore should be amongnames(coef(obj)), where obj is a list of class lflm. These methods areonly implemented for the case where xi in (1) is one dimensional.In the case that the data frame (data) contain missing values and lflm()is called with argument na.action=na.omit the functions fitted() andresiduals() will return vectors of the same length as the number of rowsin the data frame, but with missing values inserted as appropriate. Thisis not consistent with other regression functions in S-PLUS, but we �nd itmore convenient for general use.
12



3.3 Surface EstimationWhen x in (1) has dimension two or more, using the argument n.pointsto lflm() will result in a rectangular grid of �tting points being spannedparallel to the coordinate axes. Often, no observations will be present inthe corners of this grid. In this situation we suggest that the �tting pointsare supplied directly through the x.points argument to lflm().To facilitate this process it is possible to use lflm.data.grid() to gener-ate the rectangular grid and in.chull() to delete the �tting points notinside the convex hull spanned by the observations x1;x2; : : : ;xN . How-ever, in.chull() works only when x has dimension two.Note: The function in.chull(), supplied together with the software, is notused by other functions. Therefore, it can safely be deleted or renamed.4 ExampleThe ethanol example of (Chambers & Hastie 1991, Section 8.2.2) is usedsince this clearly illustrates some of the di�erences between the standardS-PLUS function used of locally weighted regression, loess(), and lflm().However, the strength of lflm() is mainly when, conditioning on one ortwo variables, there are more explanatory variables in the linear model thanhere. The example uses data stored in the data frame ethanol includedin S-PLUS. Below \>" indicates the S-PLUS prompt and \+" indicates thesecondary prompt.The data are from an experiment with a single-cylinder automobile testengine using ethanol as fuel (Brinkman 1981). The dependent variableNOx is the amount of nitric oxide and nitrogen dioxide in the exhaust,normalized by the work done by the engine, and the unit is �g per joule.There are two predictors (i) the compression ratio C and (ii) the equivalenceratio E, a measure of the air to fuel ratio. There were 88 runs of theexperiment.The purpose of the analysis is to estimate the dependence of the expectedvalue of NOx on C and E, without an a priory assumption of a speci�cparametric form. Since the convex hull spanned by the observations ofthe predictors is almost rectangular we will use �tting points spanning arectangular grid of the predictors. In (Chambers & Hastie 1991, pp. 331-13



335) it is shown that substantial curvature exists in the direction of theequivalence ratio E. For this reason a local quadratic approximation seemsappropriate. Using a 50% nearest neighbour bandwidth the surface can beestimated using the command> loess(NOx � C*E, span=0.5, degree=2, data=ethanol)this will scale the predictors, by dividing them by their 10% trimmed samplestandard deviation (Chambers & Hastie 1991, p. 315). With the exceptionof the �tting points used this can also be reproduced by use of lflm().The command> eth.surf <- lflm(NOx � (1)|(C*E), bt="nn", alpha=0.5,+ degree=2, scale=sqrt(c(var(ethanol$C),var(ethanol$E))),+ data=ethanol, n.points=15)will scale by the untrimmed sample standard deviations and store the resultas eth.surf. The estimated surface can be viewed by issuing the command> plot(eth.surf, pt="wireframe", what="Intercept", zlab="NOx")The plot is displayed in Figure 1. It seems that the \hill" runs parallelto the direction of the compression ratio C. As a �rst step we could thendrop the cross-products between C and E by adding the argument CP=F inthe call to lflm. However we will go directly to a conditional parametricmodel, in which the surface is linear in C, i.e. the expected value of NOxis modelled as �0(E) + �1(E)C, where �0(�) and �1(�) are smooth functions.Such a model is �tted by the command> eth.cpm1 <- lflm(NOx � (1+C)|(E), bt="nn", alpha=0.5,+ degree=2, data=ethanol, n.points=50)Since an intercept term is included by default the formula NOx � (C)|(E)will be equivalent. As usual, a model without an intercept can be requestedby replacing 1 with -1. The model just �tted includes third order terms inthe local design matrix used. Hence, to mimic> loess(NOx � C*E, span=0.5, degree=2, parametric="C",+ drop.square="C", data=ethanol)which is an example of how a conditional parametric model is speci�ed inloess() (Chambers & Hastie 1991, p. 344), the command> eth.cpm2 <- lflm(NOx � (C)|(E), bt="nn", alpha=0.5,+ degree=c(2,1), data=ethanol, n.points=50)14
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Figure 1: Wire-frame plot of intercept in eth.surf.should be used. The �t eth.cpm1 and the coe�cient corresponding to C ineth.cpm2 may be plotted by the commands> par(mfrow=c(1,2))> plot(eth.cpm1, type="l")> lines(eth.cmp2, what="C", lty=2)The resulting plots are shown in Figure 2 and as expected eth.cpm2 resultsin more smooth estimates. Printing the bandwidth component of eth.cpm1or eth.cpm2 reveals that at the leftmost point the bandwidth spans 56%of the axis and at the rightmost point the corresponding number is 43%.Comparing with (Chambers & Hastie 1991, Section 8.2.2) it is seen that theresults are presented quite di�erently from when loess() are used; loess()focus on the surface, while lflm() focus on the coe�cient functions.A page containing some simple diagnostics is obtained by the commands15
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Figure 2: Estimated coe�cient functions from eth.cpm1 (solid) and thecoe�cient function corresponding to C from eth.cpm2 (dotted).> par(mfrow=c(2,2))> plot(fitted(eth.cpm2),residuals(eth.cpm2))> qqnorm(residuals(eth.cpm2))> qqline(residuals(eth.cpm2))> plot(ethanol$C,residuals(eth.cpm2))> plot(ethanol$E,residuals(eth.cpm2))The plots are shown in Figure 3 on page 17. The lower left plot indicatesthat the dependence on C is not strictly linear given E. Actually, in this casean additive model �tted by use of gam() is probably more appropriate, see(Chambers & Hastie 1991, Section 7.2.5).To gain some understanding of the uncertainty associated with the esti-mates, bootstrapping of the residuals can be applied (Efron & Tibshirani1993). In Appendix A.1 a program which will generate 200 bootstrap repli-cates of eth.cpm2 calculated at 30 points of equal distance along the E axisis shown. The program also calculates pointwise estimates of the mean andthe standard deviation.The actual bootstrapping (the for-loop) took 141 seconds on a HP 9000/800.Figure 4 on page 18 shows the 95% standard normal intervals based on thebootstrap replicates. To interpret these as con�dence intervals we need toassume that the model is correct and estimated without bias. As arguedabove this is somewhat doubtful. The plot was generated by the programshown in Appendix A.2. 16
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Figure 3: Simple diagnostics for the �t corresponding to eth.cpm2.5 Obtaining the code and installationThe source code is found at http://www.imm.dtu.dk/�han/lflm.tgzOn UNIX systems: Place lflm.tgz in a temporary directory. Uncom-press the �le by executing gunzip lflm.tgz and unpack the resulting tapearchive �le by executing tar -xvf lflm.tar. Hereafter; follow the instruc-tions in the �le called README.The program is known to compile and run under HP-UX 9 and 10, withS-PLUS 3.4 installed, and under RedHat Linux 4.0 (kernel version 2.0.18)with R 0.50 installed. 17
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Figure 4: Mean and 95% standard normal intervals based on 200 bootstrapreplicates of eth.cpm2 (dotted), together with the original estimates (solid).6 ConclusionThe conditional parametric model is reviewed, together with estimationusing locally weighted �tting of a linear model derived from the originalmodel. Furthermore, a software package for S-PLUS / R is described. Thesoftware can also be used for well known methods like kernel regression andlocally weighted polynomial regression.Since the user interface is similar to other S-PLUS / R functions for regres-sion the software is easy to use. Furthermore, to increase speed the coreof the program is written in the ANSI-C programming language. The soft-ware is exible enough to allow experimentation with variable bandwidthselection procedures and evaluation structures. Also, the size of the regres-sion problem which can be handled is solely determined by the hardware /operation system con�guration.A Sample S-PLUS programsA.1 BootstrappingThe following S-PLUS program was used to generate 200 bootstrap repli-cates of eth.cpm2 produced by lflm() as shown on page 14. The programalso calculates pointwise estimates of the mean and standard deviation.18



eth.cpm2.resid <- residuals(eth.cpm2)eth.cpm2.fitted <- fitted(eth.cpm2)eth.cpm2.boot.1 <- matrix(nrow=30, ncol=200)eth.cpm2.boot.C <- matrix(nrow=30, ncol=200)eth.cpm2.boot.E <-seq(min(ethanol$E),max(ethanol$E), length=30)for(b in 1:200) {tmp <-lflm(NOx ~ (C)|(E), degree=c(2,1), bt="nn", alpha=0.5,x.points=data.frame(E=eth.cpm2.boot.E),data=data.frame(C=ethanol$C, E=ethanol$E,NOx=eth.cpm2.fitted +sample(eth.cpm2.resid, length(eth.cpm2.resid), T)))eth.cpm2.boot.1[,b] <- coef(tmp)[, "Intercept"]eth.cpm2.boot.C[,b] <- coef(tmp)[, "C"]}eth.cpm2.summ <- vector("list", 0)eth.cpm2.summ$Intercept <-data.frame(mean=apply(eth.cpm2.boot.1, 1, "mean"),sd=sqrt(apply(eth.cpm2.boot.1, 1, "var")))eth.cpm2.summ$C <-data.frame(mean=apply(eth.cpm2.boot.C, 1, "mean"),sd=sqrt(apply(eth.cpm2.boot.C, 1, "var")))A.2 PlottingTo produce the plot of the pointwise 95% con�dence intervals shown inFigure 4 on page 18 the following S-PLUS program was used:par(mfrow=c(1, 2))for(what in c("Intercept", "C")) {matplot(eth.cpm2.boot.E,cbind(qnorm(p=0.025,mean=get(what, eth.cpm2.summ)$mean,sd=get(what, eth.cpm2.summ)$sd),get(what, eth.cpm2.summ)$mean,qnorm(p=0.975,19



mean=get(what, eth.cpm2.summ)$mean,sd=get(what, eth.cpm2.summ)$sd)),type="l", lty=2, col=1, xlab="E", ylab=what)axis(1)axis(2)box()lines(eth.cpm2, what=what)}ReferencesAnderson, T. W., Fang, K. T. & Olkin, I., eds (1994),Multivariate Analysisand Its Applications, Institute of Mathematical Statistics, Hayward,chapter Coplots, Nonparametric Regression, and conditionally Para-metric Fits, pp. 21{36.Brinkman, N. D. (1981), `Ethanol fuel|a single-cylinder engine study ofe�ciency and exhaust emissions', SAE transactions 90(810345), 1410{1424.Chambers, J. M. & Hastie, T. J., eds (1991), Statistical Models in S,Wadsworth, Belmont, CA.Cleveland, W. S. & Devlin, S. J. (1988), `Locally weighted regression: Anapproach to regression analysis by local �tting', Journal of the Amer-ican Statistical Association 83, 596{610.Efron, B. & Tibshirani, R. J. (1993), An Introduction to the Bootstrap,Chapman & Hall, London/New York.H�ardle, W. (1990), Applied Nonparametric Regression, Cambridge Univer-sity Press, Cambridge, UK.Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman& Hall, London/New York.Hastie, T. & Tibshirani, R. (1993), `Varying-coe�cient models', Journal ofthe Royal Statistical Society, Series B, Methodological 55, 757{796.20
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