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1 Summary

Meteorological ensemble forecasts aim at quantifying the uncertainty of a forecast by
offering several scenarios of the future development of the weather. Ideally, we would
think of the ensembles as samples from a probability distribution function reflecting the
uncertainty of the unperturbed forecast. In this report we address the problems of (i)
transforming the meteorological ensembles to wind power ensembles and, (ii) correcting
the ensemble quantiles to allow a probabilistic interpretation.

The methods are applied to two wind farms using ensembles from the European Centre
for Medium-Range Weather Forecasts (ECMWF) or National Center for Environmental
Prediction (NCEP) in the U.S.It is shown that the resulting ensemble quantiles are able
to distinguish between situations with low and high uncertainty. Furthermore, often the
quantiles indicate an uncertainty which is significantly smaller than the uncertainty which
follow from historical (climatological) data. However, quite often the actual wind power
production is outside the range of ensemble forecast and therefore it is not possible to ob-
tain information regarding the extreme quantiles. A spread/skill analysis were performed.
From this it is concluded that the spread of the quantiles is indeed a good indicator for
the actual uncertainty of the forecast.

From the results presented in this report it is not clear if there is any benefit of one
ensemble prediction system over the other. However, some strange behaviour is observed
for adjusted quantiles based on NCEP ensembles. Hence, we cannot advice to use NCEP
ensembles for horizond] below 24 hours. Also for one wind farm (Hagesholm) some strange
behaviour is observed for a very small range of horizons just over 36 hours. Also, due to
the limited number of NCEP-ensembles (11) compared to ECMWF (51) NCEP-ensembles
is most suited when only the central part of the probability distribution is required.

2 Introduction

In recent years a growing interest in information about the uncertainty of wind power
forecasts in different weather situations has emerged. Based on wind speed measurements
and standard meteorological forecasts Bremnes (2002) estimates the power curve of a
small wind farm and then models the relation between the actual and forecasted wind
speed both with respect to the mean and the variance (including correlation). Pinson and
Kariniotakis (2003) use consecutive forecasts as ensembles and based on these a quantity
called “meteo-risk” is defined. This quantity measures the agreement between consecutive
forecasts and is used to predict the uncertainty of the wind power forecast. Lange and
Heinemann (2003) identify relations between typical weather situations and the magnitude

!'Time from initialization of the meteorological model until the time-point for which the forecast is
valid.



of the forecast error. In a research project carried out together with the Eltra (T'SO in
western Denmark) Nielsen _and Madsen (2002) developed a stochastic model describing
variance and correlation of the forecast errors when using WPPT, version 2 (Nielsen et all,
2000). In this report we approach the problem of supplying situation specific information
about the uncertainty of wind power forecasts by use of meteorological ensemble forecasts
from the European Centre for Medium-Range Weather Forecasts (ECMWF'). However,
the approach is not limited to this particular ensemble prediction system. Although the
approach is applied to wind farms it does not use local measurements of wind speed and
therefore it is also applicable to geographical regions at least of sizes comparable to the
spatial resolution of the meteorological model.

Meteorological ensemble forecasting attempts to quantify the uncertainty of short and
medium range weather forecasts by producing several forecasts generated under slightly
different initial conditions or using slightly different meteorological models. As just one
example consider e.g. the wind speed ensemble forecast from ECMWEF shown in Figure [T,
where the initialization corresponds to 12:00 (UTC) at Aug. 14, 2003. The left panel of
Figure [ shows 51 possible scenarios or ensemble members of the wind speed development
from the initialization of the model and 7 days ahead. It is seen that up to three days
ahead the ensembles are quite similar and from thereon the ensembles seems to diverge
(this is of cause dependent on the specific weather situation). Note also that although the
spread seems small around day 2 the impact on the power production may be quite high.

From the plot of the individual ensembles it is difficult to deduce quantitative information.
Such information can be obtained by plotting quantiles as shown in the right panel of the
figure. For operational use such quantiles should be correct in a probabilistic sense, e.g.
in the long run the 90% quantile should be exceeded by the actual wind speed in 10%
of the cases. The quantiles do not offer information about the autocorrelation. Such
correlation may be important e.g. when combining wind and hydro systems or in other
energy systems where direct or indirect storage of wind power is possible. However, in
this report we will focus on the correctness of the ensemble quantiles after transformation
to ensembles of power production.

As described in Section Bl the spatial resolution of the meteorological models is 40-80 km.
Hence it cannot be expected that the ensemble quantiles are correct in a probabilistic
sense when compared to a wind speed measurement at a point or when ensembles of
power production are compared to the actual production of a wind farm.

The outline of the report is as follows. Section Bl describes the data used. Estimation of
power curves with special emphasis on issues relating to ensemble forecasting are described
in Section @l and the probabilistic properties of the wind power ensembles are addressed.
In Section Bl a method for correcting the ensemble quantiles is presented. The quality of
the ensemble forecasts, using ECMWF- or NCEP-ensembles, are addressed in Section [l
Finally in Section [ we draw conclusions and discuss the results.
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Figure 1: Individual ECMWF wind speed ensemble members and quantiles (10, 25, 50,
75, 90 percent) for the 7 day forecast starting at Aug. 14, 2003, 12:00 (UTC).

3 Data

The data used in this study consists of the wind power production of two wind farms in
Denmark together with ensemble forecasts of wind speed and direction. More specifically:

e 15 min. power averages from the Tung Knob offshore wind farm consisting of 10 Ves-
tas V39 turbines (500kW nominal). Location (UTM Zone 32): 661100E, 6182700N.

e 60 min. power averages from the Hagesholm wind farm consisting of 6 NM-2000
NEG Micron turbines (2000kW nominal). Location (UTM Zone 32): 584700E,
6203700N.

e ECMWE (European Centre for Medium-Range Weather Forecasts) ensembles of
wind speed and direction 10m a.g.l. (above ground level) interpolated to the loca-
tions of the wind farms. The temporal resolution of the forecasts output is 6 hours.
The model is a spectral global model giving a horizontal resolution of approximately
80 km. The calculations are initiated every day at 12:00 (UTC) and the horizon is 10
days. The forecasts are available approximately 17 hours after the initial time. The
ensemble consists of one unperturbed forecast and 25 pairs of forecasts for which
the initial conditions are perturbed in the positive and negative direction of vectors
based on linear combinations of singular vectors (Molteni et all, [1996). Furthermore,
for each model run attempts are made to account for sub-grid processes by use of
stochastic physics (Buizza_et_all, [1999). To reduce the storage-requirement it was
decided to follow Buizza (2002) and store forecasts for horizons up to 7 days only.

e The INCEP! (National Center for Environmental Prediction) ensemble system is
based on the NCEP GFS (Global Forecast System) spectral model (Sela, [1980).
The system is currently run operationally 4 times daily out to a lead time of 384
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hours. The deterministic (unperturbed) forecast is integrated at a spectral trun-
cation of T382 (equivalent to around 40km grid spacing) for the first 180 hours
and thereafter at T190 (equivalent to around 80km grid spacing). For all hori-
zons the number for vertical levels is 64. A set of ensemble members is created by
adding or subtracting bred modes to the unperturbed analysis (Toth and Kalnay,
1993, 11997). The bred modes are the differences in the deterministic and perturbed
forecasts that evolve over the course of the forecast integrations. They are peri-
odically rescaled before being recylced into subsequent forecasts. The perturbed
ensemble members are integrated at a spectral truncation of T126 out to 180 hours
and thereafter at T62. For all horizons the number of vertical levels is 28. For
the 00Z forecast cycle an unperturbed integration is performed at the same resolu-
tion as the perturbed members. The operational ensemble system configuration has
changed a little during the period of this study. However for format of the data ob-
tained for the purpose of this study has not changed much. Data was collected from
the ftp site ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/mrf/prod/|for the 00Z
and 127 forecast cycles at a horizontal resolution of 1x1 degree for leadtimes out to
180 hours at 6 hour intervals. Before April 2004 (as used in this work) the maximum
lead time was 84 hours. The fields collected were u (westerly) and v (southerly) wind
components at 10 m a.g.l. and 850hPa, temperature at 2m and 850hPa, and mean
sea level pressure for the region 12W to 35E and 25N to 65N. For the 00Z forecasts
12 concurrent forecasts are obtained: 2 unperturbed forecasts at T382 and T190
and 5 pairs of perturbed forecasts. For the 127 forecasts 11 concurrent forecasts are
obtained: 1 unperturbed forecast at T382 and 5 pairs of perturbed forecasts. The
00Z cycle forecasts are used in this study because of the availability of the control
(unperturbed) forecast made at the same spectal truncation, which is not present
for the 127 cycle forecast.

e The period considered is January 1 — October 31, 2003. Data until June 1 is used
for training/estimation of e.g. power curves, while the remaining data are used for
testing the methods. For Tung Knob data are available back to July 1, 1999. Data
from before January 1, 2003 is only used in Section [l to indicate the overall spread
of historic power productions.

Figure @ shows the average forecasted wind speed versus horizon for NCEP and ECMWF
forecasts. The diurnal variation is clearly seen in the forecasts. Furthermore, there is a
large difference between the the NCEP analysis (i.e. the O-hour forecast) and the remaining
horizons.
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Figure 2: Average forecasted wind speed versus horizon for NCEP and ECMWTF forecasts.



4 Power Curves

Since a wind speed measurement is rarely representative for a whole wind farm and since
the availability and reliability of such measurements often is low in reality it was decided
that the method to be developed should not use wind speed measurements. Consequently,
power curves must be estimated using the power output and the unperturbed forecast.
One of the challenges implied by this approach is that the unperturbed forecast of course
is associated with some uncertainty when compared to the wind speed and direction
experienced by the wind farm. Bias depending on the speed and direction can be corrected
for by the statistical methods used, but random variation will result in biased estimates
of the power curve, e.g. if a power curve model is fitted specifically for 48 hours forecasts
then this model will never predict the maximum production.

With the aim of obtaining e.g. a small root mean squared error of a forecast the use of
biased estimates obtained as just outlined is appropriate (Lonsson, [1994; Nielsen et all,
20024,1h). However, with the aim of producing ensembles of the wind power production the
bias of the estimated power curve should be small. The approach used here is characterized
by (i) a simple transformation of the power to force the power curve estimate to span
the full range of possible power productions and (ii) estimation of a power curve not
depending on the horizon. It is also important to use all observations available. The
power measurements are available as averages over either 15 or 60 minute intervals, while
the forecasts are available every sixth hour and can be interpreted as an average over
a relatively small interval of time (approximately 10 minutes). To align a forecast with
every observation additional forecasts are created using linear interpolation. Since the
forecasts are updated daily we must consider horizons from 0 to 24 hours in order to use
every observation once. Due to the strange behaviour of the NCEP-analysis (cf. Figure
on page [Bl) the NCEP analysis is not used and hence for NCEP horizons 6 to 30 hours
are used.

With respect to the transformation let P denote the power output of the wind farm, the
transformed power y is found using
pP-P

=cy+ ¢ log=———, 1
Y 0 1gP—P (1)

where ¢y, ¢, P, and P are coefficients to be determined from data. To ensure that the
total range of the power is covered P is determined as the largest multiple of 10 kW which
is smaller than all observations and P as the smallest multiple of 10 kW which is larger
than all observations. The remaining constants which determine the placement and the
slope of the transformation is found by nonlinear regression in the inverse of ([l) when y
is replaced by the unperturbed forecast of the wind speed. This amounts to estimating a
simple logistic-shaped power curve with a fixed span of power output. For the data used
cut-out do not seem to occur.

To account for the wind direction, deviations from the logistic shape, and to adjust for
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bias originating from the uncertainty of the forecast the transformed power output is
modelled as

y:f(u7v)+g(u7v)7_+67 (2)
where the wind velocity (u,v) is a vector representation of the unperturbed forecast of
speed and direction, 7 is the forecast horizon (lead time) of the meteorological model,
f and g are smooth functions, and e is the error term. The term g(u,v)r adjust for
an increasing uncertainty with horizon which may also depend on the wind speed and
direction. In this way the bias of the estimate of f(u, v) is reduced and after transformation
to the original scale this is used as the power curve. The non-parametric approach to
modelling and estimation is similar to the approach used in WPPT, version 4 (Nielsen
et al., 2002d). However, here the adaptive version of the estimation method is not used.

When no parametric assumptions are placed on the functions f and ¢ the model ()
is a conditional parametric model (Cleveland, 11994; [Hastie and Tibshirani, 1993). The
functions are estimated by local regression with bandwidths chosen using the nearest
neighbour principle and a tricube weight function. A local linear approximation is used
for f and a local constant approximation is used for g. It is possible to fit models of this
kind using the standard S-PLUS function loess, but we have used the S-PLUS library
LFLM (Nielsen, 1997) because it is more flexible. The nearest neighbour bandwidth is
selected by considering the actual resulting bandwidth and by requiring the fit not to
exhibit excess variability. It is found that a bandwidth of 10% is required for the fit to
be sufficiently smooth. Since this bandwidth results in an actual bandwidth of 4-7 m/s
when the forecasted wind speed is 5 m/s it is not attempted to increase the bandwidth
further.

Figure Bl displays the resulting estimate of the power curve of Tung Knob. The dif-
ference between ECMWF and NCEP forecasts is relatively large and the dependence
on wind direction is rather different. This can partly be explained by the difference in
mean forecasted values as displayed on Figure Pl Within both of the forecast systems
(ECMWEF /NCEP) a rather large dependence on the forecasted wind direction is evident.
Furthermore, the right panel of Figure B displays also the estimate obtained when exclud-
ing g(u, v)7 from the model. It is seen that this in most cases shifts the power curve to the
right, while the transformation preserves the full span. The decision whether to include
the forecast horizon (lead time) of the meteorological model in the model (2) used for
estimation of the power curve is based on the probabilistic properties of the wind power
ensembles obtained by filtering all ensembles trough the power curves obtained. Let r be
the rank of the observed power as compared to the ensembles obtained as just outlined
and let N be the number of ensembles, i.e. N = 51 for ECMWF ensembles. If the en-
semble forecast is correct in a probabilistic sense then, except for rounding due the finite
number of ensembles, (r — 1)/N will be uniformly distributed on [0, 1]. This observation
is the basis of rank histograms, also called Talagrand diagrams (Toth et _all, 2003). The
uniformity of (r—1)/N can be judged from data given that these are grouped according to
some criteria. Here the data are grouped according to site, exclusion/inclusion of horizon
in the power curve model, and horizon in steps of six hours. Instead of histograms the
uniformity of (r — 1)/N is judged from Quantile-Quantile plots or QQ-plots which is a

8


http://www.splus.com

ECMWF / Tung Knob

Including horizon
Excluding horizon

02 46 8 12

| | 4500 L1111
270 ﬁ
I~ 4000 T
||} 3s00 o
a I~ 3000
= —
g/ I 2500 ;
£ B =3
5 000 a_)
z 1500 g
B a
1000
I
E 500
T T 1 T T Lo o
B e LA i e e ol
-10 -5 0 5 10
02468 12
East (m/s i
(m/s) Forecasted wind speed (m/s)
NCEP / Tung Knob
Including horizon
Excluding horizon
- 0 5 10 15
| | 4500 ! | ] ]
T 770
I~ 4000 T T T T T T T
e L e 3o~ 4000
[ ss00 ! ! L ! B !
. B T e L A - 3000
g I~ 3000 . | 3777 77777 I 2000
Z | I 2500 E — :,,, ,,,,, 1000
T 000 = —_ e -0
(] @
s 5 =
1500 [e) '
- @ 4000 —fF----mckes g T L
1000 O & AR S HRY SR -
1 3000 — ; :
i s00 P R
-10 - 1 2000 :
o D072 61 ESSE /A S N €S /A R T L

East (m/s) Forecasted wind speed (m/s)

Figure 3: Left panel: Level plot of the direction dependent power curve for Tung Knob.
The circles mark 5 and 10 m/s forecasted wind speed. Right panel: Power curves for
selected wind directions (degrees) for the model corresponding to the left panel and for a
model where g(u,v)7, i.e. the horizon, is excluded from the model.

standard tool for comparing distributions (Chambers et all, [1983). Ideally, these plots
should be a straight line between (0,0) and (1,1).

The QQ-plots for the training period are displayed in Figure B for horizons 36 to 60 hours
since these, considering the calculation time, are the most relevant horizons from a Danish
perspective. It is seen that the ensemble forecasts are not correct in a probabilistic sense,
but using a power curve model where the horizon is included during estimation results in
curves closer to the line of identity, especially for the ECMWF-ensembles. For this reason
model () including the horizon is preferred.
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5 Correction of Quantiles

As seen from Figure Bl quantiles based on the power ensembles obtained as described in
Section @ can not be interpreted in a strict probabilistic sense. However, based on plots
like Figure Bl the raw ensemble quantiles can be adjusted by looking up e.g. the raw 20%
quantile on the 2nd axis and reading off the correct probability on the 1st axis. For
instance from the plot in the lower left corner it can be seen that the raw 20% quantile
in reality is closer to a 40% quantile. Also, for this particular plot the actual probability
is approximately 25% when the raw probability reaches zero; for this reason we can not
get information about true probabilities below 25%.

With the aim of adjusting the raw quantiles derived from the power ensembles a model
which estimates the true probability from the raw probability and the horizon is derived.
For the training period the raw probabilities are calculated as (r — 1)/N, see Section Hl
Hereafter, the data are grouped by each individual horizon, i.e. 15 min. steps for Tung
Knob and 60 min. steps for Hagesholm. For each horizon the data are then sorted by the
raw probability and correct probabilities are obtained by generating equidistantly spaced
values between 0 and 1. This amounts to generating the data used in QQ-plots for each
horizon separately.

Figure B displays some common properties of the data. It is seen that quite strong fluc-
tuations with the horizon or time of day are present. Furthermore, given the horizon the
adjusted probability can be approximated by a smooth function of the raw probability.
However, saturation occurs for raw probabilities equal to 0 and 1. This is because obser-
vations occur relatively frequently outside the range of the ensemble forecast and for the
example displayed in the left panel of Figure Bl it is not possible to obtain probabilistic
correct quantiles for probabilities below approximately 30% or above approximately 90%.
Furthermore, the steep slopes are difficult to model and are likely to induce local bias of
the estimates. For this reason it is decided to exclude data with raw probabilities equal
to 0 or 1 from the analysis. Furthermore, the adjusted probabilities are logit-transformed
(see (B below) in order to ensure that the model obtained returns adjusted probabilities
between 0 and 1.

Due to the structure of the data a conditional parametric model ((Cleveland, [1994; Hastie
and Tibshirani, [1993) is used where the dependence on the raw probability p, is modelled
as a cubic spline with boundary knots at 0 and 1 and two equidistantly placed internal
knots (de Boor, 1978). The coefficients of the spline are estimated non-parametrically as
smooth functions of the horizon 7. The model is formally written

Pa

log 7 = B(p)6(7) + ¢ (3)

a

where p, is the adjusted probability, B(p,) is a matrix representing a spline basis expansion
of the raw probability p,., 6(7) is the vector of smooth functions, and € is the error.
Estimation is performed using local regression with a fixed bandwidth and a tricube

11
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Figure 5: Examples of the dependence of the adjusted probability on the raw probability
given a specific horizon (left) and on the horizon given a specific raw probability (right).

weight function. Due to the presence of peaks (Figure B, right), the functions 6(7) are
locally approximated by 2nd order polynomials. The software LFLM (Im, ) is
usedd. The bandwidth is chosen by inspecting the residuals of the fit for Tung Knob; to
eliminate clear systematic variation with the horizon a bandwidth of two hours is chosen.

Using models (@) and (@), estimated using the training period data, adjusted quantiles
are calculated for the test period. Given the observations the corresponding probabilities
Po can then be calculated. If the adjusted quantiles are correct in a probabilistic sense
these should be uniformly distributed between 0 and 1. However, due to saturation as
described above, no information about probabilities outside the range of the estimated p,
is available. Hence, p, should be uniformly distributed on the range of the estimated p,,
considering each horizon separately.

2With two internal knots the basis B(p,) has 6 columns; the resulting model can not be fitted using
standard S-PLUS.
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In Figure @ results based on the test period are depicted in terms of the QQ-plots con-
sidering the range of estimated p, described above. It is seen that the adjusted quantiles
are close to being probabilistically correct; the maximum deviation seems to be below
10%. In general the results are better when using ECMWF-ensembles than when using
NCEP-ensembles, especially for Hagesholm.
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Figure 6: QQ-plots for adjusted quantiles (test period) the two wind farms and for horizons
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in Figures [[6 and
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Initialization: 09 Jun 2003 12:00 (UTC)

Initialization: 06 Oct 2003 12:00 (UTC)
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Figure 7: Two examples of adjusted ensemble quantiles for the wind farm at Hagesholm.
The red lines indicate the 25% and 75% quantiles, the median is indicated by the blue
line, and the actual production is indicated by the black line.

6 Sharpness, resolution, and spread/skill of the en-
semble forecasts.

Although it is not the main focus of the report the quality of the obtained ensemble quan-
tiles of wind power is briefly addressed in this section. Examples of forecasted quantiles
(25%, 50%, and 75%) are displayed in Figure [ For the forecast with initialization time
12:00 Oct. 6, 2003 (UTC) it is seen that the Inter Quartile Range (IQR), i.e. the power
(vertical) difference between the 1st and the 3rd quartile (the 25% and the 75% quantile),
is relatively high between day 2 and 3. The same forecast has markedly lower uncertainty
between day 5 and 6 although the level of the power production is similar.

Given ensemble quantiles which are correct in a probabilistic sense the quality of these
depends on

(i) the ability to distinguish between situations with low and high uncertainty and on

(ii) the sharpness of the distributions.

Here the sharpness is measured as the IQR. For Tung Knob and horizons 36-42 hours
the 25% quantile is just below the estimated range of p,, cf. Figure B To obtain values
for the 25% quantile linear interpolation to the natural 0% quantile P is used. For Tung
Knob P is set to —80kW .

Qualitatively (i) is fulfilled if both low and high values of the IQR occur and with respect
to (ii) the IQR should be smaller than the IQR obtained from historic production data.
These aspects are addressed for Tung Knob in Figure 8 and for Hagesholm in Figure @ for
horizons ranging from 36 to 60 hours. The figures show the 5%, 50% and 95% quantiles of
the distribution of all IQRs in our test set, in six plots ordered by the actually produced
power. Especially for small and large power productions is the IQR usually low, and
typically much lower than the historical IQR derived from the measurement, as shown by
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the dashed lines in the plots. The 5% and 95% quantiles of the ensemble IQR indicate high
variability and for probabilistic correct quantiles this can be interpreted as the fulfillment
of (i). Furthermore, it is seen that in many situations the ensemble IQR is significantly
smaller than the IQR of the historic power productions, i.e. the ensemble forecast is sharp
compared to historic data. For the steep part of the power curve the IQR is smaller than
the IQR of the historic data in approximately 50% of the cases.

Figure on page shows the IQR plotted against horizon for the full test period.
Especially for NCEP some strange behavior is observed for some horizons. The diurnal
variation is again seen clearly in the ECMWEF plots. To a large extent this can be
explained by small ranges of valid quantiles as can be seen on Figure on page 28
The plots indicate that for a large fraction of the time small IQR-values are observed.
This is confirmed by the histograms of IQR in Figure [ on page Bl Due the marked non-
normality of the IQR-values both standard and robust measures of sharpness (location)
and resolution (scale) are addressed:

e For sharpness (location) the mean is used with the median being the robust alter-
native. See Figure [[1l on page EZII

e For resolution (scale) the standard deviation (SD) is used with the median absolute
deviation (MAD) being the robust alternative. The MAD is scaled so that if the
sample is Gaussian expected value of the MAD is equal to that of SD. See Figure
on page 22

The plots do not indicate any large difference between quantile forecasts from based on
either NCEP or ECMWEF. However:

e With respect to sharpness the NCEP-based quantiles vary rapidly with horizon,
especially for Hagesholm. There is a small tendency for the NCEP-based quantiles
to have smaller IQR than the ECMWF-based quantiles.

e With respect to resolution the ECMWF-based quantiles seems to have slightly
higher variation in IQR-values than the NCEP-based quantiles.

However, as indicated on Figure [l on page [[4l (and Figures [[H (page 28) and [[@ (page 29)))
the ECMWF-based quantiles are also (slightly) more reliable than the NCEP-based quan-
tiles. Note that the small IQR-values observed relatively frequently for horizons up to
five days indicate that even on longer horizons situations with low uncertainty occur.
Figure [[3l on page 22 shows such an example.

On a side note, we looked at the potential of the IQR to explain the actual accuracy of

the ensemble forecast, taken here as the median (50% quantile) of all ensemble forecast
members. The idea is that there should be a low ensemble spread correlating with a
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high achieved accuracy of the forecast and vice versa. In other words, there should be a
connection between forecast spread and forecast skill. Figure [[4] shows the spread/skill
relationship for the median (50% quantile) taken as a point forecast. It is seen that the
spread /skill relationship is not very dependent on the horizon considered. This is taken
as an indication of the IQR actually reflecting the underlying uncertainty.
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Figure 8: Tung Knob: Histogram of power production during the period 30/06/1999
23:15 - 01/06/2003 00:00 (UTC) with 25% and 75% quantiles indicated by vertical lines
(left). Quantiles (5%, 50%, 95%) of the IQR of ensemble quantiles adjusted as described
in Section B (right). The horizontal lines indicate the IQR of the historic data, i.e. the
difference between the two vertical lines on the left. The grouping variable is the forecasted
power production in terms of the 50% ensemble quantile.
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Figure 9: Hagesholm: Histogram of power production during the period 1/12/2002 00:00
- 01/06/2003 00:00 (UTC) with 25% and 75% quantiles indicated by vertical lines (left).
Quantiles (5%, 50%, 95%) of the IQR of ensemble quantiles adjusted as described in
Section B (right). The horizontal lines indicate the IQR of the historic data, i.e. the
difference between the two vertical lines on the left. The grouping variable is the forecasted
power production in terms of the 50% ensemble quantile.
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Figure 10: Color coded scatter plot of horizon and Inter Quartile Range (IQR) normalized
by installed capacity (test period). The color code is relative to each subplot (cyan
indicates the maximum count). The mean IQR =+ one SD is overlayed as lines on the
plots. Horizons (lead times) of 24 and 36 hours are shown by vertical lines.
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with ECMWF initialization time Oct. 10, 2003 12:00 (UTC). The red lines indicate the
25% and 75% quantiles, the median is indicated by the blue line, and the actual production
is indicated by the black line.
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7 Conclusion and Discussion

The main focus of this report is the development of a method, which is able to (i) transform
meteorological ensembles of wind speed and direction to ensembles of power production,
and (ii) adjust the ensemble quantiles so that these are probabilistic correct on the long
run when evaluated on a forecast horizon basis. Ensembles of the wind speed and direction
10m a.g.l. from the European Centre for Medium-Range Weather Forecasts (ECMWF)
and from the National Center for Environmental Prediction (NCEP) in the U.S. are used
in the investigation.

Opposed to point forecasts, it is found to be important to estimate the power curve in
a way that reduces the bias of the estimate. Ideally, an unbiased estimate should be
used. Such an estimate could be obtained if very adequate wind speed measurements
were available at each farm. However, ensemble forecasts corresponding to such measure-
ments are not available because ensemble forecasting systems use low spatial resolution.
Consequently, a method must be developed that transforms the meteorological ensembles
to ensembles corresponding to the local measurements. Basically, this poses the same
issues regarding biased estimates as for the power curve estimation.

To ensure that the full range of possible power productions can be forecasted by the
power curve the power curve model works on appropriately transformed power output.
Hereafter, the power curve is estimated using a conditional parametric model based on
the unperturbed forecast where a conditional linear dependence on the horizon adjusts for
uncertainty of the meteorological forecast. It is shown that in terms of the probabilistic
properties of the power ensembles the chosen approach is preferable to just excluding the
forecast horizon from the model.

It is also shown that the quantiles derived from the power ensemble forecasts are not
correct in a probabilistic sense. However, except for the extreme quantiles, these can be
transformed to probabilistic more adequate quantiles. As a tool for such an transformation
a conditional parametric model is used. The quality of the transformation is verified by
testing it on independent data. Interestingly, the coefficients of the transformation varies
rapidly with the horizon (a bandwidth of two hours is used for estimating in model (B
on page [[l). One reason could be that the meteorological model does not predict the
diurnal variation adequately. Also, note that the forecasts are available only for 00:00,
06:00, 12:00, and 18:00; the interpolation used may also induce some of the more high-
frequent variations in the coefficients. Due to the observations just mentioned it seems
appropriate to address the issue of fine-tune the power-curve modelling. Other approaches
for estimation of the power curve should also be investigated. One such example is inverse
regression; if the dependence of wind direction can be neglected, e.g. for the power curve of
a region, and if the power production measurements can be adjusted to represent the full
capacity of the region then uncertainty is only associated with the unperturbed forecast
of the wind speed. It can easily be seen that this leads to a (non-parametric) regression
model where the independent variable is the power production and the response is the
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unperturbed forecast of the wind speed. The inverse of the estimated curve is then an
unbiased estimate of the power curve.

While not the main focus of the report the ability of the resulting power quantiles to
distinguish between situations with low or high uncertainty is addressed. It is found that
the power quantiles have this ability in that the distance between the 25% and the 75%
quantile varies markedly. As a consequence we conclude that the meteorological ensembles
possess this ability also. Taking the median as a point forecast the absolute error of this
forecast is compared to the Inter Quartile Range (IQR) of the forecasted quantiles. This
analysis show a clear spread/skill relationship which is only marginally influenced by the
horizon. Hence, the spread of the quantiles is indeed a good indicator for the actual
uncertainty of the forecast.

From the results presented in this report it is not clear if there is any benefit of one
ensemble prediction system over the other. However, some strange behaviour is observed
for adjusted quantiles based on NCEP ensembles. Hence, we cannot advice to use NCEP
ensembles for horizons below 24 hours. Also for one wind farm (Hagesholm) some strange
behaviour is observed for a very small range of horizons just over 36 hours. Also, due to the
limited number of NCEP-ensembles (11) compared to ECMWF (51), NCEP-ensembles
are most suited when only the central part of the probability distribution is required.

In some operational settings the production of individual farms is not of primary interest.
If quantiles for a limited number of farms are of interest one solution is to generate power
ensembles for each farm. However, the model for adjusting the quantiles must be based
on the total production of the farms in question. In case of many farms it might be more
practical to work with the total production of geographical regions. In this case a power
curve of the region must be estimated, but the quantiles can be adjusted as described in
this report. If the total production is not available then up-scaling becomes an issue too.
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QQ-plots for adjusted quantiles (ECMWTF, test period) for the two wind farms

and for horizons in steps of 6 hours.
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Figure 17: Histograms of IQR (test period) of horizons in steps of 6 hours up to 84 hours.
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